• Title/Summary/Keyword: 감육 배관

Search Result 119, Processing Time 0.04 seconds

Development of Leak and Vibration Monitoring System for High Pressure Steam Pipe by Using a Camera (카메라를 이용한 고압 증기 배관 누설/진동 감시시스템 개발)

  • Jeon, Hyeong-Seop;Suh, Jang-Su;Chae, Gyung-Sun;Son, Ki-Sung;Kim, Se-Oh;Lee, Nam-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.496-503
    • /
    • 2016
  • Leakages at plant structures of power and petrochemistry plants have led to casualties and economic losses. These leakages are caused by fatigue failure of pipelines and their wall thickness. Vibration measurement methods for plant pipelines mainly use acceleration and laser sensors. These sensors are difficult to install and operate and thus lead to an increase in operational cost especially for wide area surveillance. Recently, measurements of leak and vibration displacements using cameras have attracted the interest of many researchers. This method has advantages such as simple installation, long distance monitoring, and wide area surveillance. Therefore, in this paper, we have developed a system that can measure the leakage and vibrational displacement by using a camera. Furthermore, the developed system was verified with experimental data.

Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation (신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon (감육현상을 고려한 가스배관의 파손확률 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Application of Guided Ultrasonic Wave Technology for Evaluation of Welding Part in Cooling Water Pipe (냉각수 배관 용접부 평가를 위한 유도초음파 기술의 적용)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The ultrasonic guided wave propagates along with the given structure's wall direction. Because of this specific character, the ultrasonic guided waves arc used in many other fields. Especially, it can be readily utilized for nondestructive inspection of various structures that are made up of gas pipes, heat exchanger tubes, and thin plates. Further, the guided wave technology can be readily utilized when inspecting pipes or thin plates which pose high risk of the accident but for which the nondestructive inspection itself is impossible because it is difficult to get to them since they are coated or buried underground. In the other hand, conventional ultrasonic testing such as thickness gauging uses bulk waves and only tests the region of structure immediately below the transducer. As a result of the application about inlet and outlet cooling water line using guided wave test, we conformed that the overall corrosions were in the lower side of the 304.8 mm inlet valve and these corrosions were engaged in not locally but through the lower side of the valve line. In the near future, we can expect that the detectable defect size is smaller than before along with the development of the sensing technology.

Effects of the Changes in Flow Pattern on Convective Heat Transfer in the Vicinity of Pipe Elbow (유동형태 변화가 배관 곡관부 대류열전달에 미치는 영향)

  • Song, Seung-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • In this study, by varying flow patterns, which is one of the hydraulic factors of FAC, a strategy to reduce pipe wall thinning by mass transfer has been investigated. A similarity between heat transfer and mass transfer was verified via theoretical analysis, and local convective heat transfer coefficients were analyzed using a commercial numerical analysis program. When ribs were installed inside and outside of the internal surface in the straight section of the pipe, the maximum local heat transfer coefficient was shown to decrease substantially by up to 24.9% compared to the basic flow depending on the position and shape of ribs. If a guide vein was inserted in the pipe elbow, the maximum local heat transfer coefficient decreased by up to 26.7% compared to the basic flow depending on the internal surface area of the pipe by the guide vein.

Analysis of Wall-Thinning Effects Caused by Power Uprates in the Secondary System of a Nuclear Power Plant (원전 2차계통의 출력증강 운전에 따른 배관감육 영향 분석)

  • Yun, Hun;Hwang, Kyeongmo;Lee, Hyoseoung;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • Piping and equipment are degraded by flow-accelerated corrosion (FAC) in nuclear power plants. FAC causes numerous problems and nuclear utilities maintain programs to control FAC. The key parameters influencing FAC are hydrodynamic conditions, water chemistry, and effect of materials. Recently, a nuclear utility has planned slight power uprates in Korea. Operating conditions need to be changed in the secondary system according to power uprates. This study analyzed the effect of wall-thinning caused by power uprates. The change of operation data in the secondary cycle is reviewed, and wall-thinning rates are analyzed in the main lines. As a result, two phase (mixture of water and steam) lines have a greater impact than a water line under power uprate conditions. Also, the quality of steam is the most important factor for FAC in two phase lines.

A Study on the Verification of Network Flow Analysis Methodology of CHECWORKS Program used in Pipe Wall Thinning Management (배관감육관리에 활용되는 CHECWORKS 프로그램의 열수력해석 방법론 검증에 관한 연구)

  • Seo, Hyuk Ki;Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • In general, pipelines at nuclear power plants are affected by various types of degradation mechanisms and may be ruptured after gradually thinning. FAC (Flow-Accelerated Corrosion) is typical aging mechanism affecting the secondary side piping system. In Korea nuclear power plants, CHECWORKS program have been used for management of wall thinning damages. However, sometimes, CHECWORKS program shows wrong results at the stage of NFA (Network Flow Analysis) in case of complex pipelines. This paper describes the calculation results of pressure drop in a complex pipeline and single line by using the CHECWORKS program and the analysis results are compared with those of engineering calculation results including errors between them.

Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant (원전 2차계통의 수화학 변화가 배관감육에 미치는 영향 분석)

  • Yun, Hun;Hwang, Kyeongmo;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.325-330
    • /
    • 2015
  • Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

Gradual pipe wall thinning diagnosis through the variation of dispersion characteristics of SH waves (SH파 분산특성 변화를 이용한 배관 점진감육 진단 기법)

  • Cho, Seung-Hyun;Kwon, Hyu-Sang;Ahn, Bong-Young;Lee, Seung-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.258-259
    • /
    • 2009
  • Pipe wall thinning is one of severe problems on structural safety in nuclear power plants. A guided wave can be a proper tool for the fast evaluation or monitoring. As for gradual wall thinnings, however, low sensitivity caused by the low reflection coefficient limits the use of the guided wave. In this work, instead of the guided wave reflection at the wall thinning, the variation of dispersion characteristics is concerned. SH waves were employed due to several advantages and the magnetostrictive patch transducers were used for the excitation and sensing of the SH waves. The proposed method were verified with some experiments and showed the feasibility as an effective tool for the inspection of gradual wall thinning.

  • PDF

Experimental study of internal flow field about 90degree elbow for cooling seawater pipe at the main condenser (주복수기 냉각해수배관의 직각 엘보 내부유동특성에 관한 연구)

  • Oh, Seung Jin;Cho, Dae Hwan;Bong, Tae Geun;Kim, Ok Sok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.152-153
    • /
    • 2012
  • While engine room arranging pipe which is used from the vessel, It measured the internal flow of 90 degree elbow which is used from the main condenser. Fluid flow in elbow of 90 degree is measured by PIV and Dewetron system. The Reynolds number adopts 50000 and experimental study of flow field in the elbow.

  • PDF