• Title/Summary/Keyword: 감육

Search Result 186, Processing Time 0.022 seconds

감육위치와 굽힘반경의 변화에 따른 감육엘보우의 손상 거동

  • 김태순;박치용;박재학
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.345-353
    • /
    • 2003
  • 탄소강은 가공성과 용접성이 우수하기 때문에 각종 산업설비의 배관재로 많이 사용되고 있으며, 특히 가압중수로형 원전의 1차측 배관과 가압경수로형 원전의 2차측 배관에 주로 사용되고 있다. 그러나 탄소강 배관은 부식에 취약하므로 유동가속부식(FAC, Flow Accelerated Corrosion) 현상에 의한 배관의 두께가 감소하는 감육 손상이 중요하게 대두되고 있는 실정이다. 이러한 감육현상은 다른 어떤 설비보다 안전성의 확보가 강조되고 있는 원전 배관의 경우에 있어서는 특히 중요한 건전성 저해요인으로 인식되고 있다.(중략)

  • PDF

Evaluation of Improvement of Detection Capability of Infrared Thermography Tests for Wall-Thinning Defects in Piping Components by Applying Lock-in Mode (적외선열화상 시험에서 위상잠금모드 적용에 따른 배관 감육결함 검출능력 개선 평가)

  • Kim, Jin Weon;Yun, Kyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1175-1182
    • /
    • 2013
  • The lock-in mode infrared thermography (IRT) technique has been developed to improve the detection capability of defects in materials with high thermal conductivity, and it has been shown to provide better detection capability than conventional active IRT. Therefore, to investigate the application of this technique to nuclear piping components, lock-in mode IRT tests were conducted on pipe specimens containing simulated wall-thinning defects. Phase images of the wall-thinning defects were obtained from the tests, and they were compared with thermal images obtained from conventional active IRT tests. It showed that the ability to size the detected wall-thinning defects in piping components was improved by using lock-in mode IRT. The improvement was especially apparent when detecting short and narrow defects and defects with slanted edges. However, the detection capability for shallow wall-thinning defects did not improve much when using lock-in mode IRT.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

Technology Based on Wall-Thinning Prediction and Numerical Analysis Techniques for Wall-Thinning Analysis of Small-Bore Carbon Steel Piping (감육예측 및 수치해석 기법을 활용한 소구경 탄소강배관 감육영향 분석에 관한 연구)

  • Lee, Dae-Young;Hwang, Kyeong-Mo;Jin, Tae-Eun;Park, Won;Oh, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 2010
  • In approximately fifty utilities, including KHNP (Korea Hydro & Nuclear Power), CHECWORKS is used as a tool for predicting and managing the wall thinning of carbon steel piping; this wall thinning is caused by flow-accelerated corrosion (FAC). It is known that CHECWORKS is only applicable to predict the wall thinning of piping with large bores. When dealing with small-bore steel piping, FAC engineers measure the thickness of the susceptible area that is selected on the basis of the experience and judgment of the engineer. This paper proposes the application of CHECWORKS for the management of wall thinning of small-bore piping. Four small-bore pipelines of a domestic nuclear power plant were analyzed from the viewpoints of FAC and fluid dynamics by using CHECWORKS and FLUENT code. Depending on the engineer's skill, CHECWORKS can also be used for the management of wall thinning of small-bore piping.

Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping (탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kang, Deok-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficients related to local wall thinning. Experiments and numerical analyses of the tee sections of different down-scaled piping components were performed and the results were compared. Numerical analyses of full-scale models of actual plants were performed in order to simulate the flow behaviors inside the piping components. In order to determine the relationship between the turbulence coefficients and the rate of local wall thinning, numerical analyses of the tee components in the main feedwater systems were performed. The turbulence coefficients obtained from the numerical analyses were compared with the local wear rate obtained from the measurement data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

Deformation Measurement of Well Thinning Elbow by Using Shearography (전단간섭법을 이용한 감육 곡관부의 변형 계측)

  • Jung, Hyun-Chul;Kim, Koung-Suk;Chang, Ho-Sub;Jung, Sung-Wook;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.321-328
    • /
    • 2006
  • In this study, the deformation oi wall thinning elbow is measured and the position of the internal thinning defect is found out by shearography. Shearography is an optical method which has applied to nondestructive testing (NDT) and the strain/stress and deformation analysis. This technique has the merit of the directly measuring the first derivative of displacement with sensitivity which can be adjusted by handling the tilt mirror in the interferometer. In this paper, we tested carbon steel pipe locally wall thinned and loaded internal pressure and the shearography was applied to measure the out-of-plane deformation of wall thinning elbow and to investigate the internal thinning defect of it. From the results, it was confirmed that this technique is proper to the practical application on the pipe line system with internal defect.

Effect of Local Wall Thinned Location due to Erosion-Corrosion on Fracture Behavior of Pipes (침식-부식에 의해 감육된 배관의 파손거동에 미치는 감육위치의 영향)

  • Ahn, Seok-Hwan;Seok, Kum-Cheol;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.51-58
    • /
    • 2007
  • This study on the effects of local wall-thinned location on the fracture behavior of pipes was carried out, and the results were compared with the analytical results. Local wall-thinning for the bending test was machined with various sizes on the outside of pipes, in order to simulate the metal loss, due to erosion/corrosion. In addition, we had carried out FE analysis for the pipes with local wall thinning on the inside, and its results were comparatively studied with that of the outside. Three-dimensional elasto-plastic analyses were able to accurately simulate fracture behaviors of inner or outer wall thinning. Fracture types, obtained from the experiments and analyses, could be classified into ovalization, local buckling and crack initiation, depending on the thinned length and thinned ratio. Based on the results, the fracture behaviors of pipes with the outer wall thinning can be applied to estimate the fracture behaviors of pipes with the inner wall thinning.

Wavelet Analysis of Elastic Wave for Wall Thinned High-Pressure Service Pipes (감육을 가지는 고압배관에 대한 탄성파의 Wavelet해석)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Lee, Si-Yoon;Nam, Ki-Woo;Do, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.1-8
    • /
    • 2005
  • We studied on the nondestructive evaluation of the elastic wave signals of locally wall thinned straight pipe. Wavelet transform was applied for the time-frequency analysis of waveforms obtained by fracture wave detector due to the dropping steel ball. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the shape of local wall thinning at each frequency. In this study, comparison by wavelet transform of the AE signals and monotonic bending tests without internal pressure are conducted on 1.91 inch diameter full-scale carbon steel pipe specimens. As the results of tests, fracture behaviors could be shown by the characteristic of mechanical strength of locally wall thinned pipes and the waveforms could be evaluated for the integrity insurance of the piping system according to the length and depth range of the deffeted shape pipes in the real field.

  • PDF

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Application Angle of Defects Detection in the Pipe Using Lock-in Infrared Thermography (위상잠금 적외선 열화상 기법을 이용한 각도별 원전 감육 배관의 결함 검출)

  • Yun, Kyung-Won;Go, Gyeong-Uk;Kim, Jin-Weon;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This perform research of angle rated defect detection conditions and nuclear power plant piping defect detection by lock-In infrared thermography technique. Defects were processed according to change for wall-thinning length, Circumference orientation angle and wall-thinning depth. In the used equipment IR camera and two halogen lamps, whose full power capacitany is 1 kW, halogen lamps and target pipe's distance fixed 2 m. To analysis of the experimental results ensure for the temperature distribution data, by this data measure for defect length. Reliability of lock-In infrared thermography data is higher than Infrared thermography data. This through research, Shape of angle rated defect is identified industry place. It help various angles defect detection in the nuclear power plant in operation.