• Title/Summary/Keyword: 감습

Search Result 68, Processing Time 0.026 seconds

Resistive Humidity Sensor Using New N-Methacryloyl-N'-ethyl-N'-propyl Piperazinium Bromide Monomer and Their Properties (새로운 N-Methacryloyl-N'-ethyl-N'-propyl Piperazinium Bromide 단량체를 사용한 습도센서 및 그들의 특성 조사)

  • Lee, In-Ho;Park, Chan-Kyo;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.326-332
    • /
    • 2009
  • New humidity-sensitive monomer, N-methacryloyl-N'-ethyl-N'-propyl piperazinium bromide (MANEPPB) was prepared by the quaternization reaction of N-methacryloyl-N'-ethyl piperazine (MANEP) with 1-bromopropane. Polyelectrolytes derived from the copolymers composed of MANEPPB/MMN/AA=60/35/5, 70/25/5, 80/15/5, 90/5/5 and 95/0/5 were prepared for the humidity-sensitive membranes, which were fabricated on the gold electrode by dipping method and were crosslinked by reacting copolymers with aziridine crosslinker, trimethylolpropane tris(2-methyl-1-aziridinopropionate) (TTAP). When the resistance dependences on the relative humidity of the sensors were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was satisfied with the requirement for the common humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, frequency dependence, response and recovery time and water durability were measured and evaluated as a humidity-sensing membrane.

Humidity Sensitive Properties of Humidity Sensor Using Reactive Copolymers (반응성 공중합체들을 이용한 습도센서의 감습 특성)

  • Kim, Jin-Seok;Bae, Jang-Sun;Gong, Myeong-Seon
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.126-131
    • /
    • 2001
  • The mutually reactive copolymers poly[(vinylbenzyl chloride)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] and poly[(4-vinylpyridine)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] were synthesized for the humidity sensitive material by forming simultaneous quaternization. The humidity sensor showed an average resistance of 8.6 M$\Omega$, 310 k$\Omega$ and 12 k$\Omega$ at 30%RH, 60%RH and 90%RH, respectively. The hysteresis and temperature coefficient were $\pm$3%RH and -0.37~-0.40%RH/$^{\circ}C$. The introduction of n-BA and HEMA increased the resistance of the humidity sensor however it enhanced the adherence to the alumina substrate. The response time was 54 seconds changing from 33%RH to 85%RH and the difference of resistance was +0.2%RH after soaking in water for 2 hr.

  • PDF

The Effect of Electrode Pattern on the Humidity-sensing Properties of the Resistive Humidity Sensor Based on All-printing Process (인쇄공정으로 제조된 저항형 습도센서의 감습특성에 대한 전극패턴의 영향 연구)

  • Ahn, Hee-Yong;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • Based on our experience in developing resistive humidity sensor, interdigital gold electrodes with different fingers and gaps have been fabricated on a glass epoxy (GE) substrate using screen printing techniques. The basic structure of the electrode consisted of a 3-, 4- and 5-fingers with gaps of 310 and 460 ${\mu}m$. Gold electrode/GE was prepared by first printing silver nanopaste, followed by consecutive electroless plating of Cu, Ni and then Au. Copolymer of [2-(methacryloyloxy)ethyl] dimethyl benzyl ammonium chloride (MDBAC) and methyl methacrylate (MMA) was used as a humidity-sensing polyelectrolyte, which was fabricated by a screen printing method on the Au electrode/GE substrate. The flexible humidity sensor showed acceptable linearity between logarithmic impedance and relative humidity in the range of 20-95%RH, low hysteresis of 1.5%RH, good response and recovery time of 75 sec at 1 V, 1 kHz, and $25^{\circ}C$. Electrode construction had a significant influence on the humidity-sensing characteristics of polymeric humidity sensors. The activation energy between electrode and ion conducting polyelectrolyte plays an important role in explaining the differences of humidity sensing characteristics such as temperature dependence, sensitivity, linearity and hysteresis.

High sensitivity humidity sensors using polyimide films without fluorinated group (플루오르 그룹을 배제시킨 폴리이미드를 이용한 고감도 습도 센서)

  • Shim, Jae-Hun;Lee, Jun-Young;Kim, Jung-Hyun;Choa, Sung-Hoon;Kim, Yong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1997-1999
    • /
    • 2002
  • 고분자 주쇄(Main chain)의 소수성을 가지는 플루오르 그룹을 배제시킨 습도 민감성 폴리이미드를 합성 및 이미드화 하였고, 이를 이용한 초고참도 습도 센서를 제작 및 측정하였다. 사용된 폴리이미드는 다이아민계로 Oxydianyline(ODA)와 다이안하이드라이드계로 Pyromellitic dianhydried(PMDA)를 유기용매 Dimethyla cetamide(DMAc) 하에서 폴리이미드 전구체 (Polyamic acid)를 합성하였으며, 진공 및 승온 조건에서 유기용매를 제거하여 이미드화(Imidization) 반응을 진행시켜 제조하였다. 본 습도 센서는 정전용량형 고감도 습도 센서로 디자인되었으며 실리콘 웨이퍼상에서 일반적인 반도체 공정을 이용하여 구현하였다. 본 습도 센서는 센서 크기와 유효면적, 감습층의 두께를 주요 변수로 설정하였으며 이에 따른 습도 민감성 효과를 평가 및 분석하였다. 측정 결과 유효면적 70%, 감습층 두께 $1.1{\mu}m$ 로 제작된 습도 센서는 상대숨도$20%{\sim}90%$ 영역에서 캐패시턴스와 선형적 상관관계를 보여주고 있으며, 습도 민감도는 3.9 pF/%RH 클 얻을 수 있었다.

  • PDF

The Effect of $Li_2CO_3$ Addition on Humidity-Sensitive Characteristics of $ZnCr_2O_4$-Based Thick-Film Humidity Sensors ($ZnCr_2O_4$계 후막 습도센서의 감습 특성에 미치는 $Li_2CO_3$의 영향)

  • Yoon, Sang-Ok;Kim, Kwan-Soo;Jo, Tae-Hyun;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.947-950
    • /
    • 2004
  • [ $ZnCr_2O_4$ ]에 $Li_2CO_3$$5{\sim}30wt%$ 범위에서 정량적으로 첨가한 감습재료에서 screen printing법으로 알루미나 기판 위에 후막으로 인쇄하고 $650\sim750^{\circ}C$에서 소결하여 후막 습도센서를 제작하였으며, $30\sim90%RH$ 범위에서 상대습도에 따른 저항 및 정전용량 특성을 조사하였다. $ZnCr_2O_4$$Li_2CO_3$가 5wt%가 첨가된 조성의 센서는 70%RH이상에서, 25wt%이상 첨가된 조성의 센서는 40%RH이하에서 저항 및 정전용량이 급격히 변화하는 switching 현상을 나타내었다. 반면, $ZnCr_2O_4$$Li_2CO_3$가 15wt%가 첨가된 조성의 센서는 선형적으로 저항은 감소하였고, 정전용량은 증가하였다.

  • PDF

Self-Curable Humidity-Sensitive Polyelectrolytes Attached to the Alumina Substrate for the Humidity Sensor and their Stability in Water (알루미나 기재에 부착된 습도센서용 자기 가교형 감습성 전해질 고분자의 내수성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • New cinnamate group-containing copolymers for a self-curable, humidity-sensitive polyelectrolyte and polymeric anchoring agents were prepared by copolymerization of [2-[(methacryloyloxy) ethyl]dimethyl]propyl ammonium bromide(MEPAB), methyl methacrylate(MMA), 3-(trimethoxysilyl) propyl methacrylate(TMSPM) and 2-(cinnamoyloxy)ethyl methacrylate(CEMA). Photocrosslinkable copolymer composed of MEPAB/MMA/TMSPM/CEMA=70/20/0/10 were used for humidity-sensitive membrane, and those of 50/0/20/30 and 0/0/50/50 were used for polymeric anchoring agents. 3- (Triethoxysilyl)propyl cinnamate(TESPC) was also used as a surface-pretreating agent for the comparison of capability of attachment of polyelectrolyte to the electrode surface with polymeric photocurable silanecoupling agents. Pretreatment of the electrode substrate with anchoring agents was performed to form a cinnamate thin film on the electrode through covalent bonds. When the sensors were irradiated with UV light, the anchoring of a polyelectrolyte into the substrate was carried out via the [2$\pi$+2$\pi$] cycloaddition. The resulting sensors using polymeric anchoring agents and TESPC showed water durability with increase of resistance by 60~85%, which is corresponding to the reduction of 2.25~3.15%RH, after soaking in water for 24 h. They showed good hysteresis (-0.2%RH), response time (90 sec) and long-term stability at high temperature and humidity.

Fabrication of a Humidity Sensing Device using Silicon Thermopile (실리콘 Thermopile을 이용한 감습 소자의 제작)

  • 김태윤;주병권;오명환;박정호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.70-76
    • /
    • 1994
  • A humidity sensing device based on a new humidity sensing principle is designed and fabricated in this study. The silicon thermopile is consisted of 25 couples of p-type diffused layer/Al strips. The internal resistance and the Seebeck coefficient are 300kl and 537$\mu$V/K, respectively Fabricated sensors showed linear response characteristics proportional to relative humidity changes with a sensitivity of 9$\mu$V/%RH in the range from 20% to 90%.

  • PDF

Formation and humidity-sensing properties of porous silicon oxide films by the electrochemical treatment (전기화학적 처리에 의한 다공질 실리콘 산화막의 형성과 감습 특성)

  • 최복길;민남기;류지호;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.93-99
    • /
    • 1996
  • The formation properties and oxidation mechanism of electrochemically oxidized porous silicon(OPS) films have been studied. To examine the humidity-sensitive properties of OPS films, surface-type and bulk-type humidity sensors were fabricated. The oxidized thickness of porous silicon layer(PSL) increases with the charge supplied during electrochemical humidity sensor shows high sensitivity at high relative humidity in low temperature. The sensitivity and linearity can be improved by optimizing a porosity of PSL. (author). refs., figs.

  • PDF

Study on the development of mesa-type humidity sensors using porous silicon layer (다공질 실리콘층을 이용한 메사형 습도센서의 개발에 관한 연구)

  • Kim, Seong-Jeen
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 1999
  • A capacitance-type humidity sensor with mesa structure in which porous silicon layer is used as humidity-sensing material is developed and its humidity sensing properties are measured. This sensor has a structure where two electrodes are set on the up-side of the wafer against the past typical structure having these electrodes on the up and down-side of the wafer. Therefore, the sensor can be fabricated monolithically to be more compatible with the IC process technology, and is possible to detect more correct output capacitance by removing the effect of the parasitic capacitance from the bottom layer and other junctions. To do this, the sensor was fabricated using process such as localized formation of porous silicon, oxidation of porous silicon layer, and etching of oxidized porous silicon layer. From the completed samples, the dependence of capacitance on the relative humidity of 55 to 90% more was measured at room temperature. As the result, the measured capacitance increased monotonously higher at the low frequency of 120 Hz, where the capacitance was observed to increase over 300%.

  • PDF