• Title/Summary/Keyword: 감쇠모형

Search Result 236, Processing Time 0.03 seconds

Seismic Responses Control of Coupled Shear Wall Structures Using LRBs (LRB를 이용한 병렬전단벽 구조물의 지진응답제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. When these structures are subjected to seismic excitations, excessive shear forces are induced in coupling beams. Accordingly, brittle failure of coupling beams may occur or shear walls may yield first. To avoid this problem, damping devices can be installed in coupling beams. It can increase the vibration control effect and improve the seismic resistance performance of the coupled shear wall structure by avoiding stress concentration and the brittle failure of coupling beams. Based on this background research, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam in this study and the authors investigated the seismic response control effect and stress distribution of the proposed system. To this end, a modeling technique that can effectively predict the structural behavior of coupled shear wall structures has been proposed. With this proposed technique, time history analyses of the example coupled shear wall structure subjected to seismic excitation were performed and the vibration control effects of the seismic responses were investigated.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Design and Analysis of a Mooring System for an Offshore Platform in the Concept Design Phase (해양플랜트 개념설계 단계에서의 계류계 초기 설계 및 해석)

  • Sungjun Jung;Byeongwon Park;Jaehwan Jung;Seunghoon Oh;Jongchun Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.248-253
    • /
    • 2023
  • Most offshore platforms utilize chain mooring systems for position keeping. However, information regarding related design modification processes is scarce in literature. This study focuses on the floating liquefied natural gas (LNG) bunkering terminal (FLBT) as the target of shore platform and analyzes the corresponding initial mooring design and model tests via numerical simulations. Subsequently, based on the modified design conditions, a new mooring system design is proposed. Adjusting the main direction of the mooring line bundle according to the dominant environmental direction is found to significantly reduce the mooring design load. Even turret-moored offshore platforms are exposed to beam sea conditions, leading to high mooring tension due to motions in beam sea conditions. Collinear environmental conditions cannot be considered as design conditions. Mooring design loads occur under complex conditions of wind, waves, and currents in different environmental directions. Therefore, it is essential appropriately assign the roll damping coefficients during mooring analysis because the roll has a significant effect on mooring tension.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

Experimental Study on the Analysis and Estimation of Metacentric Height in Response to Roll Period and Moment of Inertia Variations in Ships (선박의 횡요주기와 관성모멘트 변화에 따른 GM 추정 및 분석을 위한 실험 연구)

  • LeeChan Choi;JungHwi Kim;DongHyup Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.380-388
    • /
    • 2023
  • This study estimates the metacentric height (GM) of a model ship by varying the transverse weight distribution, considering the effects of the roll period and moment of inertia, and compares it with the GM values measured by the inclining test. In the process, the relationship between the values is analyzed. Three types of ships-a 7-ton fishing vessel, 20-ton fishing vessel, and KRISO Very Large Crude-oil Carrier (KVLCC)-were used for the experiment and comparison. The roll period and moment of inertia were measured using the free roll decay and swing frame tests, and the GM was measured using inclining test. The estimated GM from the roll period and moment of inertia showed the same trend as the GM measured using the inclining test in the change of the weight distribution. However, the GM values measured using the inclining test were lower. Therefore, additional correction factors or parameters other than the roll period and moment of inertia are necessary for estimating GM. In the future, the relationship between the weight center and the estimated GM will be analyzed to derive the correction factors.

A Study on Risk Assessment Method for Earthquake-Induced Landslides (지진에 의한 산사태 위험도 평가방안에 관한 연구)

  • Seo, Junpyo;Eu, Song;Lee, Kihwan;Lee, Changwoo;Woo, Choongshik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.694-709
    • /
    • 2021
  • Purpose: In this study, earthquake-induced landslide risk assessment was conducted to provide basic data for efficient and preemptive damage prevention by selecting the erosion control work before the earthquake and the prediction and restoration priorities of the damaged area after the earthquake. Method: The study analyzed the previous studies abroad to examine the evaluation methodology and to derive the evaluation factors, and examine the utilization of the landslide hazard map currently used in Korea. In addition, the earthquake-induced landslide hazard map was also established on a pilot basis based on the fault zone and epicenter of Pohang using seismic attenuation. Result: The earthquake-induced landslide risk assessment study showed that China ranked 44%, Italy 16%, the U.S. 15%, Japan 10%, and Taiwan 8%. As for the evaluation method, the statistical model was the most common at 59%, and the physical model was found at 23%. The factors frequently used in the statistical model were altitude, distance from the fault, gradient, slope aspect, country rock, and topographic curvature. Since Korea's landslide hazard map reflects topography, geology, and forest floor conditions, it has been shown that it is reasonable to evaluate the risk of earthquake-induced landslides using it. As a result of evaluating the risk of landslides based on the fault zone and epicenter in the Pohang area, the risk grade was changed to reflect the impact of the earthquake. Conclusion: It is effective to use the landslide hazard map to evaluate the risk of earthquake-induced landslides at the regional scale. The risk map based on the fault zone is effective when used in the selection of a target site for preventive erosion control work to prevent damage from earthquake-induced landslides. In addition, the risk map based on the epicenter can be used for efficient follow-up management in order to prioritize damage prevention measures, such as to investigate the current status of landslide damage after an earthquake, or to restore the damaged area.

Performance Measurements of Positron Emission Tomography: An Investigation Using General Electric $Advance^{TM}$ (양전자방출단층촬영기의 표준 성능평가 방법: GE $Advance^{TM}$에 적용한 예)

  • Lee, J.R.;Choi, Y.;Choe, Y.S.;Lee, K.H.;Kim, S.E.;Shin, S.A.;Kim, B.T.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.548-559
    • /
    • 1996
  • A series of performance measurements of positron emission tomography (PET) were performed following the recommendations of the Computer and Instrumentation Council of the Society of Nuclear Medicine and the National Electrical Manufacturers Association. We investigated the performance of the General Electric $Advance^{TM}$ PET. The measurements include the basic intrinsic tests of spatial resolution, scatter fraction, sensitivity, and count rate losses and randoms. They also include the tests of the accuracy of corrections: count rate linearity correction, uniformity correction, scatter correction and attenuation correction. GE $Advance^{TM}$ PET has bismuth germanate oxide crystals (4.0mm transaxial ${\times}$ 8.1mm axial ${\times}$ 30.0mm radial) in 18 rings, which form 35 imaging planes spaced by 4.25mm. The system has retractable tungsten septa 1mm thick and 12cm long. Transaxial resolution was 4.92mm FWHM in 2D and 5.14mm FWHM in 3D at the center. Average axial resolution in 2D decreased from 3.91mm FWHM at the center to 6.49mm FWHM at R=20cm. Average scatter fraction of direct and cross slices was 9.57%. Dead-time losses of 50% corresponded to a radioactivity concentration of $4.86{\mu}Ci/cc$ and a true count rate of 519 kcps in 2D. The accuracy of count rate linearity correction was 1.84% at the activity of $4.50{\mu}Ci/cc$. Non-uniformity was 2.06% in 2D and 2.93% in 3D. Remnant errors after scatter correction were 0.55% in 2D and 4.12% in 3D. The errors of attenuation correction were 6.21% (air), 0.20% (water), -6.32% (teflon) in 2D and 5.00% (air), 6.94% (water), 3.01% (teflon) in 3D. The results indicate the performance of GE $Advance^{TM}$ PET scanner to be well suited for clinical and research applications.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

New Gain Function Based on Attenuation Characteristics of Ballast Track for GPR Analysis (GPR 분석을 위한 자갈궤도 자갈의 감쇄특성을 이용한 이득함수 개발)

  • Shin, Jihoon;Choi, Yeongtae;Jang, SeungYup
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2017
  • Ballasted track has been used as track system for more than 100 years. Ballasted track has advantages of low construction cost, flexible maintenance, low noise and vibration, and so on. However, ballasted track leads to continuous settlement which causes maintenance. Recently, increase in speed, traffic volume, and weight of train requires more frequent maintenance. Fouling, well-known phenomenon of accumulation of fine materials due to intrusion of subgrade and breakage of ballast materials, expedites the settlement (i.e., irregular settlement) of track. Ground Penetrating Radar (GPR) can be one of non-destructive tools that can evaluate fouling level of ballast. In this paper, a gain function based on the attenuation characteristics of ballast material is suggested in conjunction with Hilbert transform. Lab box tests and full-scale tests indicate that the suggested method reasonably classifies clean, fouled layers, and subgrade. However, additional study to eliminate effect of sleeper and to include the scattering features of the electromagnetic wave in ballast voids should be required in order to enhance the accuracy.

Estimation of Water Temperature by Heat Balance Method in Paddy Field. (열수지법(熱收支法)에 의한 벼논의 수온추정(水溫推定))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jung-Nam;Takami, Shinich
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • To determine irrigated water temperature under the rice plant canopy, micrometeorological elements air temperature, relative humidity, water temperature, solar radiation, and the rice leaf area index the rice plant canopywere measured. Water temperature under the canopy was also estimated from these data. The results are as follows ; 1. Maximum and minimum temperatures of water in the paddy field were higher about $1-2^{\circ}C$ than those of air temperature. 2. Mean water temperature under the canopy became lower than mean air temperature when the leaf area indices were greater than 4, because of decreased light penetration rates 3. Penetration amounts of net radiation under the canopy can be estimated by an exponential equation 4. Estimated water temperatures under the canopy by a combination method model was adaptable in Suweon, a plain area, but its accuracy was lower in Jinbu, an alpine area.

  • PDF