• Title/Summary/Keyword: 감쇠력

Search Result 365, Processing Time 0.02 seconds

Performance Based Design of Friction Dampers for Seismically Excited Structures (지진하중을 받는 구조물의 성능에 기초한 마찰감쇠기 설계)

  • 민경원;김형섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.17-24
    • /
    • 2003
  • The main objective of this paper is to evaluate the control performance of a coulomb friction damper(CFD) for controlling the inelastic behavior of seismically excited structures, The seismic performances of various buildings are evaluated using capacity spectrum method(CSM), and the additional dampings are calculated If the evaluated performance levels of the buildings are below the target level. Maximum friction force of the CFD to achieve additional damping is provided using the concept of equivalent viscous damping, Numerical simulations for single degree of freedom(SDOF) systems with various structural periods and post yield stiffness ratios demonstrate the effectiveness of the proposed procedure.

Development of Semi-active Damper by Magneto-Rheological Fluid (자기 유변 유체를 이용한 반능동 감쇠기의 개발)

  • 정병보;권순우;김상화;박영진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • Dampers have been used to dissipate energy in mechanical systems. There are several types of dampers such as passive, active, and semi-active damper. Semi-active dampers have higher performance than passive ones and require less power to operate than active ones. Their damping characteristics can be changed properly for varying conditions. In this paper, we investigated the semi-active damper using Magneto-Rheological fluid. Magneto-Rheological fluid, which is one of controllable fluids, changes its damping and rheological characteristics from Newtonian fluid to Bingham fluid as the magnetic field is applied. It has several advantages such as high yield strength, low viscosity, robustness to impurities and wide temperature range of stability. If we designe a semi-active damper by using this material, we can not only design a simply structured damper but also expect rapid response. In this study, we propose several types of semi-active dampers which are designed and manufactured using Magneto-Rheological fluid and some problems encountered during their applications.

  • PDF

A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber (자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구)

  • Sohn, Il-Seon;Lee, Jeong-Goo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper (감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구)

  • Lee, K.H.;Lee, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF

An Analysis of Forced Vibration Response of a Cantilever Beam with a Dry Friction Damper (건마찰 감쇠기가 부착된 외팔보의 강제진동 응답 해석)

  • Go, Young-Jun;Kang, Byoung-Yong;Chang, Ho-Gyeong;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 1996
  • A theoretical study of the forced vibration response of a cantilevered beam with non-linear dry friction damping is analyzed by various slip displacements and force levels for the position coordinates of spring-mass-damper and external exciting force. A component mode analysis is carried out based on the constraint conditions and Lagrange multipliers to treat physical systems with non-linear damping. The analysis has shown that the basic phenomena observed for a simply supported beam with a dry friction damper attached are also observed for cantilevered beam.

  • PDF

Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter (Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포)

  • Youn, Kyung-Jo;Park, Ji-Hun;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that an earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF are obtained by regression analysis of the statistical distribution of the time history responses. Finally the correlation between PDFs and statistical response distribution is presented.

Design Parameter Identification Using Transfer Function of Liquid Column Vibration Absorber (LCVA) (전달함수를 이용한 LCVA의 설계변수 분석)

  • Lee, Sung-Kyung;Min, Kyung-Won;Chung, Hee-San
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 2009
  • The purpose of this study is to verify the transfer function of input acceleration and output control force by linearizing a velocity-dependent damping term of Liquid Column Vibration Absorber (LCVA). Analytical and experimental research is conducted to identify natural frequency, damping ratio and participated mass ratio of LCVA with various section ratios of vertical and horizontal areas. Findings obtained experimentally by the shaking table test are compared with analytical findings using optimization technique with constraints. The results indicate that the level of liquid and section ratio of LCVA affect the characteristics of damping ratio and mass ratio. Damping and mass ratio increase as the section of vertical column of LCVA decreases, due to turbulence in the elbow of LCVA.

Semiactive Control of Cable-Stayed Bridges Using Full-Scale MR Fluid Dampers (실제규모의 자기유변 유체 감쇠기를 이용한 사장교의 진동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.443-450
    • /
    • 2002
  • 본 논문에서는 미국토목학회(ASCE)의 사장교에 대한 첫번째 벤치마크 문제를 이용하여 제어-구조물 상호작용을 고려한 새로운 반능동 제어 기법을 제안하였다. 이 벤치마크 문제에서는 2003년 완공 예정으로 미국 Missouri 주에 건설 중인 Cape Girardeau 교를 대상 구조물로 고려하였다. Cape Girardeau 교는 New Madrid 지진구역에 위치하고, Mississippi 강을 횡단하는 주요 교량이라는 점 때문에 설계단계에서부터 내진 문제에 대하여 자세하게 고려되었다. 상세 설계 도면을 기반으로 하여 교량의 전체적인 거동 특성을 정확하게 나타낼 수 있는 3차원 모델이 만들어졌고, 사장교의 제어 성능에 관련된 평가 기준이 수립되었다. 본 연구에서는 제어 가능한 유체 감쇠기에 속하는 MR 유체 감쇠기를 제어 장치로 제안하였고, 기존 연구에서 MR 유체 감쇠기를 포함한 구조물의 제어에 효율적이라고 검증된 clipped-optimal 알고리듬을 제어 알고리듬으로 사용하였다. 또한, 실제 규모의 MR 유체 감쇠기 실험 결과를 이용하여 수치해석에 이용할 수 있는 동적 모델을 개발하였다. MR 유체 감쇠기는 제어 가능한 에너지 소산장치이며 구조물에 에너지를 가하지 않기 때문에 제안된 제어 기법은 한정입출력 안정성이 보장된다. 수치해석을 통해, MR 유체 감쇠기를 이용한 반능동 제어 기법이 사장교의 응답 감소에 효과적인 방법임을 증명하였다.

  • PDF

Design of Vector Attenuator (벡터 감쇠기의 설계)

  • 정용채;장익수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.31-37
    • /
    • 1998
  • Magnitude/phase controlling circuit which is composed of attenuator and phase shifter make phase/gain cross-coupling, so too much tuning time is needed to find optimum operation point. In this paper, vector attenuator which control magnitude and phase of input signals is proposed. Vector attenuator in past ignores phase variation characteristics of attenuator, but vector attenuator of this paper compensates phase variation characteristics of attenuator. This vector attenuator consists of 0$^{\circ}$/180$^{\circ}$ phase shifter and low phase shifting attenuator and so forth. A 0$^{\circ}$/180$^{\circ}$ phase shifter has 0$^{\circ}$/179.9$^{\circ}$ phase shifting characteristics at a center frequency 881 MHz and a low phase shifting attenuator has an attenuation of 25dB, within the limit of 3.6$^{\circ}$ phase shift and less than -20dB reflection characteristics at both input and output ports. The designed vector attenuator shows that cartesian coordinate plane of output signal space can be represented correctly.

  • PDF