• Title/Summary/Keyword: 간접 열교환기

Search Result 14, Processing Time 0.018 seconds

Prediction of Cooling Performance for Indirect Evaporative Cooling System Using Danpla Sheet (단프라시트를 적용한 간접식 증발냉각 장치의 냉각 성능 예측)

  • Kim, Myung-Ho;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.892-897
    • /
    • 2020
  • Previous plastic heat exchangers are expensive because the mold must be newly manufactured depending on the air conditioning space. On the other hand, danpla is so thin that the heat exchange performance is excellent. Moreover, danpla can be used easily in ventilation systems in view of fabrication. This study proposes correlations for the cooling performance of an indirect evaporative cooling system. The experimental apparatus consisted of a heat exchanger, spray nozzle, fan, thermostat, pump, and measuring sensors for temperature, humidity, and airflow rate. The results showed that the effectiveness decreased gradually as the airflow rate increased. In addition, there was an optimal condition in terms of effectiveness. The performance prediction correlations were determined using the experimental data from various conditions. The proposed correlations showed performance accuracies within 4 % error.

A Study on Boiling Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 비등특성 연구)

  • 김남진;김종보
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.420-428
    • /
    • 1995
  • 현재 사용하고 있는 액화천연가스 기화기는 관내부로 -162$^{\circ}C$의 액화가스가 흐르고, 관외부로 발전소 증기응축기 출구에서 배출된 20~3$0^{\circ}C$의 해수를 흐르도록 하여, 두 유체사이의 온도차로 기화시키는 간접접촉방식 열교환기가 사용되고 있다. 그러나 간접접촉방식 열교환기는 두 유체사이의 큰 온도차로 인한 금속재료의 피로현상과 해수의 염분에 의한 재질의 부식 및 미생물 부착 등의 원인으로 열전달효율이 저하되고 있다. 따라서 본 연구는 관을 중간매체로 하는 간접접촉식 열교환기대신 액화천연가스와 기화용수인 물을 직접접촉시키는 방법으로 이용하여, 위와 같은 문제점들을 근본적으로 해결하려 한다. 본 실험에서는 기화기내의 수위 500 mm와 물의 유량 10 l/min을 일정하게 고정시키고, 액화천연가스의 유량 0.12 ㅣ/min, 0.36 l/min, 0.6 l/min, 기화기내의 압력을 100 kPa, 300 kPa, 500kPa로 변화시키면서 기화기내의 기포, 온도분포, 급팽창현상, 동결현상 및 기화후 수분함유량등의 비등특성을 규명하였다. 실험결과 기화기내의 압력이 증가할수록 기포는 작고 균일한 분포를 이루고, 폭발적인 급팽창현상은 일어나지 않았다. 또한 동결현상은 액화천연가스의 기화를 방지하지 못하였으며, 기화된 천연가스내의 수분함유량 몰%는 압력과 유량이 증가함에 따라 감소하는 경향을 보이고 있다.

  • PDF

Flow and Heat Transfer with Mesh in Direct Contact Liquid-Liquid Heat Exchanger for Solar Thermal System (태양열원을 위한 직접접촉식 액-액 열고환기에서 메쉬설치에 따른 유동 및 열전달)

  • 윤석만;김정보
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2000
  • 태양열 시스템에 사용되는 간접접촉을 열교환기는 열전달률감소, 부식, 스케일링 등의 문제에 기인하는 단점을 갖고 있다. 이러한 문제들을 해결하기 위하여 직접접촉 열교환기의 사용이 제안된다. 본 연구에서는 직접접촉 열교환기로서 분사칼럼이 도입되었다. 열전달률을 증가기키기위하여 작동유체는 연속유체와의 접촉면적을 증가시키기위하여 칼럼내에서 작고 균일한 방울들로 분산된다. 또한 작고 균일한 방울들로 만들기 위하여 열교환기 칼럼내에서 메쉬가 설치되었다. 디에틸 프탈레이트(Diethyl Pthalate , 밀도 : 1,052g/㎤)가 작동유체로 사용되었고, 메쉬가 있는 경우와 없는 경우로 비교 실험되었다. 실험중 칼럼의 길이방향으로 온도측정을 하였고, 두 유체간의 직접접촉 열교환 메카니즘을 알기 위하여 방울의 사진을 통하여 분석하였다. 방울이 제트형태로 형성될 때 방울은 작고 균일하였다. 한편 방울형태로 형성될 때는 크고 불균일하게 관찰되었으나 , 메쉬를 통해 칼럼내에서 효과적으로 작고 균일한 방울들로 되었다.

  • PDF

The Study of Comparison of Cooling System for H2 Discharge Station (수소충전용 직접 및 간접 냉각시스템 비교 평가 연구)

  • LEE, HYENCHAN;YI, JONGYEOL;BAE, CHANHYO;HEO, JEONGHO;JEON, JAEYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.163-169
    • /
    • 2019
  • This study is a research to compare efficiency of new cooling system (chiller, pre-cooler) to that of the conventional system at the hydrogen refueling station (HRS). This study includes contents for thermodynamic comparison of cooling system for HRS and comparison of pros and cons of its components. So It is to establish design concept of cooling system of HRS supplying with fuel cell electric vehicle (FCEV). HRS is charging high pressure H2 (700 bar) to FCEV. However cooling system is need to prevent temperature rise in tank. This cooling system consists of pre-cooler and chiller system.

Design of Large Capacity Clean Air Heater (대용량 청정 공기 가열 장치 설계)

  • Kim, Jeong-Woo;Jung, Kwang-Soo;Jeon, Min-Joon;Lee, Kyu-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.115-118
    • /
    • 2010
  • 2 Types of heater (Vitiated Type, Clean Air Type) in order to increase the temperature for a test are used for industry. In this report, large capacity clean air type heater was designed. Heater capacity and LNG consumption rate can be calculated by the air mass flow and heater inlet/outlet temperature. The heater is composed by Burner, Furnace, Heat Exchanger, and Stack. The hot air from the burner and cold air from the tube inlet exchange their heat indirectly in the heat exchanger, so the desired temperature can be achieved at the exit of the tube.

  • PDF

Experimental Study of Inlet/Outlet Flow Characteristics in Tube-side of Shell and Tube Heat Exchanger (원통-다관형 열교환기의 다관측 입출구 유동 특성의 실험적 연구)

  • Tu, Xin Cheng;Wang, Kai;Park, Seung-Ha;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.581-588
    • /
    • 2014
  • The inlet/outlet flow in the tube-side of the shell and tube heat exchanger was experimentally measured to investigate the effect of the porous baffle on uniform flow distribution. A 1/3rd scale-downed model of a heat exchanger was used and particle image velocimetry was applied for measuring the instantaneous velocity vector fields. The absolute errors in the flow rate were calculated and compared for the tube-side with and without the porous baffle, by varying the flow rate from 60 to 90 LPM. The results revealed that the porous baffle can improve flow uniformity and reduce the absolute error in the flow rate of the model with the baffle by about 74%, compared to that without the baffle. This result can be used for improving the performance and design of the shell and tube heat exchanger.

A Study on Direct Cooling and Washing Machine for Energy Saving-Type Dyeing Machine (에너지 절감형 염색기용 직접냉각수세장치에 대한 연구)

  • Han, Seung-Chul;Kim, Jin-Ho;Kim, Je-Hoon;Lee, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.485-491
    • /
    • 2012
  • Due to increase in production of the domestic textile industry, energy consumption in textile industry is still growing. Traditional dyeing machine has high temperature and pressure. Accordingly, it uses an indirect cooling system that utilize a heat exchanger to cool after the dyeing. However, this indirect cooling system consumes a great deal of water, takes prolonged periods of time to process and, most importantly, because of the condensing of the dye at the cooling stage requires further energy in reduction cleaning and washing process. Therefore, in this paper, we propose a direct cooling washing machine that replaces the traditional indirect cooling system to provide coolant into the dyeing machine. The newly proposed direct cooling washing machine will still use parts of the traditional dying but will be able to skip the cooling as well as the reduction cleaning and washing process, resulting in less processing time and lower energy consumption. Also, we made a prototype. The prototype was applied to dyeing machine to test the direct cooling washing machine's ability and dyeing property. Additionally, we compared indirect cooling washing machine with direct cooling washing machine about ability, material and energy saving assessment.

Study on Performance Prediction and Energy Saving of Indirect Evaporative Cooling System (간접식 증발냉각장치의 성능예측과 에너지절약에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.743-749
    • /
    • 2015
  • The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

Performance Prediction and Economic Assessment of Atmospheric Pressure MCFC/Gas Turbine Hybrid System with Indirect Turbine Firing (터빈 간접가열식 상압형 MCFC/가스터빈 복합시스템의 성능예측과 경제성 평가)

  • Choi, Joo Hwan;Kim, Tong Seop;Kwak, Bu Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • The performance of fuel cell/gas turbine hybrid systems is highly affected by system configuration. In this study, the performance of a hybrid system combining a molten carbonate fuel cell (MCFC) and an indirectly fired gas turbine was predicted. Firstly, general performance trends of the hybrid system depending on major design parameters were examined. Then, the most feasible design options with the least impact on the MCFC stack design conditions were drawn. The economic advantage of the hybrid system over the basic MCFC only system was evaluated.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.