• Title/Summary/Keyword: 간접인장실험

Search Result 48, Processing Time 0.023 seconds

Experimental Study on Long-term Characteristics of Sprayable Waterproofing Membrane (차수용 박층 멤브레인의 장기 성능 변화에 관한 실험 연구)

  • Choi, Soon-Wook;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.15-23
    • /
    • 2019
  • The sprayable waterproofing membrane is a recently introduced material in the civil engineering field, and is a material that sprays and attaches a single phase or two phase powder or liquid material to a surface to be covered using a pump and nozzle. Although the material properties are gradually reported through researches, there is a lack of studies on long-term performance compared to concrete materials used with the membranes. In this study, the long-term performance of materials was estimated using the Arrhenius equation. The temperature conditions used in this study were 65℃, 80℃ and 95℃, and the temperature was maintained with the membrane attached to the concrete block for long-term behavior. Then the membranes were tested for tensile strength and adhesion strength in the order of 30, 90, 150, 200, and 300 days. The long-term performance of the material was determined from a long-term perspective by estimating the activation energy by the Arrhenius equation. Consequently, the time to reach 50% of the performance standard could be estimated by long-term test.

EFFECT OF FILM THICKNESS OF RESIN CEMENT ON BONDING EFFICIENCY IN INDIRECT COMPOSITE RESTORATION (레진 시멘트의 film thickness가 간접 복합 레진 수복물의 접착 효율에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyuck;Choi, Gi-Woon;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of film thickness of various resin cements on bonding efficiency in indirect composite restoration by measurement of microtensile bond strength, polymerization shrinkage, flexural strength and modulus, fractographic FE-SEM analysis. Experimental groups were divided according to film thickness (< $50\;{\mu}m$-control, $50\;{\mu}m$-T50, $100\;{\mu}m$-T100, $150\;{\mu}m$-T150) using composite- based resin cements (Variolink II, Duo-Link) and adhesive-based resin cements (Panavia F, Rely X Unicem). The data was analyzed using ANOVA and Duncan's multiple comparison test (p < 0.05). The results were as follows ; 1. Variolink II showed higher microtensile bond strength than that of adhesive-based resin cements in all film thickness (p < 0.05) but Duo-Link did not show significant difference except control group (p > 0.05). 2. Microtensile bond strength of composite-based resin cements were decreased significantly according to increasing film thickness (p < 0.05) but adhesive-based resin cements did not show significant difference among film thickness (p > 0.05). 3. Panavia F showed significantly lower polymerization shrinkage than other resin cements (p < 0.05). 4. Composite-based resin cements showed significantly higher flexural strength and modulus than adhesive-based resin cements (p < 0.05). 5. FE-SEM examination showed uniform adhesive layer and well developed resin tags in composite-based resin cements but unclear adhesive layer and poorly developed resin tags in adhesive-based resin cements. In debonded surface examination, composite-based resin cements showed mixed failures but adhesive-based resin cements showed adhesive failures.

THE BONDING DURABILITY OF RESIN CEMENTS (레진시멘트의 접착 내구성에 관한 연구)

  • Cho, Min-Woo;Park, Sang-Hyuk;Kim, Jong-Ryul;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.343-355
    • /
    • 2007
  • The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.

PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN (수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교)

  • Shin, Hye-Jin;Song, Chang-Kyu;Partk, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different self-adhesive resin cements and their shear bond strength on dentin and lithium disilicate ceramic and compare these result with that of conventional resin cement. For this study, four self-adhesive resin cements (Rely-X Unicem, Embrace Wetbond, Mexcem, BisCem), one conventional resin cement (Rely-X ARC) and one restorative resin composite (Z-350) were used. In order to evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. To evaluate the shear bond strength on dentin, each cement was adhered to buccal dentinal surface of extracted human lower molars. Dentin bonding agent was applied after acid etching for groups of Rely-X ARC and Z-350. In order to evaluate the shear bond strength on ceramic, lithium disilicate glass ceramic (IPS Empress 2) disks were prepared. Only Rely-X ARC and Z-350 groups were pretreated with hydrofluoric acid and silane. And then each resin cement was adhered to ceramic surface in 2 mm diameter. Physical properties and shear bond strengths were measured using a universal testing machine. Results were as follows 1. BisCem showed the lowest compressive strength, diametral tensile strength and flexural strength. (P<0.05) 2. Self-adhesive resin cements showed significantly lower shear bond strength on the dentin and lithium disilicate ceramic than Rely-X ARC and Z-350 (P<0.05) In conclusion, self-adhesive resin cements represent the lower physical properties and shear bond strength than a conventional resin cement.

Effects of Additives on Dental Composite Resins (치과용 복합레진에 대한 첨가제의 영향)

  • 정진희;홍광일;고재영;안세영;안광덕;한동근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • Bis-GMA, 2.2-bis[p(2-hydroxy-3-methacryloyloxypropokyl)phenyl]Propane, is an essential component as a multifunctional methacrylate prepolymer in the light-curable polymeric dental composite resins. Two hydroxyl groups of the Bis-GMA molecule are considered to induce water sorption of the photocured composite resin in a mouth, resulting in gradual long-term deterioration of aesthetics and mechanical properties of the composite resins. In this study, some additives such as light stabilizer and antioxidant were added to composite resins to promote durability and storage stability of the last product. First of all, color change increased as a light stabilizer. Tinuvin P, was added to the composed resins and color stability was improved as an antioxidant, Irganox 245, was added to ones. In addition, when Tinuvin P and Irganox 245 were added together to the composed resins. the color stability was enhanced and mechanical properties such as diametral tensile strength before and after acceleration tests were also not greatly decreased. Therefore, when 0.5 weight Percent of Tinuvin P and 0.1 weight percent of Irganox 245 were added together to dental composite resins. the durability and color stability were enhanced, and furthermore the storage stability was also improved for the composed resins.

Evaluation of Moisture Susceptibility on Asphalt Mixtures mixing Anti-Stripping Agent (박리방지제의 첨가에 따른 아스팔트 혼합물의 수분민감성 평가)

  • Yang, Sung-Lin;Hwang, Sung-Do;Kim, Yeong-Min;Jeong, Kyu-Dong
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.41-52
    • /
    • 2008
  • This study is to evaluate the property for the moisture susceptibility of asphalt mixtures using anti-stripping agent. Asphalt mixtures using lime, hydrated lime and liquid anti-stripping agent are evaluated through the three types of modified moisture conditioning($H_c$, V_s$, F-T). Indirect Tensile Test, that is recommended by AASHTO TP-9, which includes creep test, resilient modulus test and strength test is used to estimate moisture susceptibility. Analysis method through Energy Ratio(ER) that is proposed by Roque at University of Florida is used to evaluate moisture susceptibility and moisture resistance effects of asphalt mixtures using anti-stripping agent. As a test result, material property of asphalt mixtures was changed by moisture conditioning methods and the types of anti-stripping agent. Also, cracking resistance of accumulated moisture damage was changed by moisture conditioning methods and the types of anti-stripping agent. Based on test result, it was found that cracking resistance using Energy Ratio was differed from 10% to 30%.

  • PDF

A study of Mechanical Properties of Hot Mix Asphalt for Developing of Quiet Pavement (저소음 포장체 개발을 위한 아스팔트 혼합물의 역학적 특성 연구)

  • Lee, Kwan-Ho;Jeong, Tae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Our domestic economy has been developed very rapidly after 1960's. Also, it is dramatically increasing traffic on road and surround environmental issues. Especially, rapid economic growth has been induced large construction of pavement, and bigger and higher traffic for transportation. These are making air pollution, traffic noise and vibration. The social requirement against the revealed road environment and traffic sound reduction is being demanded. Traffic noise of city zone is showed over the environmental specification more than 57%. In order to overcome these situations, the social attention is being increased. The quiet pavement is the same format of permeable pavement, but is not same for functional performance. In this research, it has been carried out to evaluate the fundamental-mechanical properties of hot mix asphalt for quiet pavement. Especially, couple of laboratory tests are conducted like marshall stability, resilient modulus, indirect tensile test, and compaction energy analysis with gyratory compaction curve. Also, two-layer pavement system has been adopted for developing of quiet pavement. The basic performance of hot mix asphalt of quiet pavement show a satisfaction of specification of hot mix asphalt.

Study on Modeling and Arrangement of Link-Shoes for Torsional Control of S-shaped Pedestrian Cable-Stayed Bridge (S자형 보도사장교의 비틀림 제어를 위한 링크슈의 모델링과 배치방법 연구)

  • Ji, Seon-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.210-218
    • /
    • 2019
  • Recently, cable-stayed bridges have been attempting to apply bold and experimental shapes for aesthetic and originality. In the case of bridges that have no similar cases, deep understanding and verification of analytical modeling is needed. S-shaped curved pedestrian cable-stayed bridge is always twisted because the cable is arranged on one side of the inverted triangular truss girder. In order to suppress the torsion, the Link-shoes are arranged at the left and right top members with reference to the Bearing placed at the mid-bottom member. The first research is related to the modeling method of Link-Shoe and Diaphram. In order to accurately reflect the transverse structural system and the torsional stiffness, it was necessary to model the Link-Shoe and the Diaphram directly rather than indirectly using the stiffness of the Bearing. The second study is related to the lateral arrangement of Bearing and Link-Shoes. Method 1 is to place in order of Link-shoe, Bearing, and Link-shoe from outside the curve radius. Method 2 is place to in order of Bearing, Bearing, and Link-shoe. In method 2, compared to method 1, the stress in the outer top member was larger and the stress in the inner one was decreased. It is analyzed that the stress adjustment is possible according to the lateral arrangement of Bearing and Link-Shoe.