• Title/Summary/Keyword: 간접인장강도

Search Result 91, Processing Time 0.026 seconds

MICROTENSILE BOND STRENGTH OF SELF-ETCHING AND SELF-ADHESIVE RESIN CEMENTS TO DENTIN AND INDIRECT COMPOSITE RESIN (간접 복합레진 합착 시 자가부식형과 자가접착형 레진시멘트의 상아질에 대한 미세인장 결합강도)

  • Park, Jae-Gu;Cho, Young-Gon;Kim, Il-Sin
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.106-115
    • /
    • 2010
  • The purpose of this study was to evaluate the microtensile bond strength (${\mu}TBS$), failure modes and bonding interfaces of self-etching and three self-adhesive resin cements to dentin and indirect composite resin. Cylindrical composite blocks (Tescera, Bisco Inc.) were luted with resin cements (PA: Panavia F 2.0, Kuraray Medical Inc., RE: RelyX Unicem Clicker, 3M ESPE., MA: Maxem, Kerr Co., BI: BisCem, Bisco Inc.) on the prepared occlusal dentin surfaces of 20 extracted molars. After storage in distilled water for 24 h, $1.0\;mm\;{\times}\;1.0\;mm$ composite-dentin beams were prepared. ${\mu}TBS$ was tested at a cross-head speed of 0.5 mm/min. Data were analyzed with one-way ANOVA and Tukey's HSD test. Dentin sides of all fractured specimens and interfaces of resin cements-dentin or resin cements-composite were examined at FESEM (Field Emission-Scanning Electron Microscope). In conclusion, PA and RE showed higher bond strength and closer adaptation than MA and BI when indirect composite blocks were luted to dentin using a self-etching and three self-adhesive resin cements.

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

An Evaluation of Mechanical Characteristics of Modified Asphalt Concrete Mixture (개질아스팔트 콘크리트 혼합물의 기계적 특성평가)

  • Kim, Nakseok;Bang, Sanyoung
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Many researches have been conducted to evaluate the performance of modified asphalt concrete mixtures. The research was conducted to estimate the laboratory mechanical characteristics of Elvaloy-modified asphalt concrete mixture. To achieve its intended objective, indirect tensile test and resilient modulus test were performed. The rest results revealed that indirect tensile strengths and resilient moduli of the Elvaloy-modified asphalt concrete mixture were higher than those of the conventional dense-graded. As a result, within the limits of the tests conducted in this research, it is predicted that the performance and stability of the Elvaloy-modified asphalt concrete mixture are better than that of the conventional dense-graded one.

Mechanical Properties of Polymeric Dental Restorative Composites Filled With Silica Treated by Heat at Various Temperatures (다양한 온도에서 열처리시킨 실리카가 충진된 치아수복용 고분자 복합체의 기계적 물성)

  • Kim, Ohyoung;Lee, Jung Soo;Seo, Kitaek;Kang, Doo Whan;Kang, Ho-Jong;Gong, Myoung-Seon;Oh, Myoung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.549-555
    • /
    • 2005
  • To evaluate the posterior and anterior restoration of polymeric dental restorative composite (PDRC), PDRC was prepared using a silica filler treated by heat at various temperatures. Compressive strength (CS) and diametral tensile strength (DTS) values were investigated to study the effect of a heat-treated silica on the mechanical properties of PDRC using the recommended dental specifications. Both the particle size and specific volume of silica were decreased upon increasing the heat treatment temperature. CS and DTS values of PDRC containing a heat-treated silica showed 1.2 and 1.3 times, respectively, higher than that of the PDRC containing a neat silica. Also, it was found that the lower heat treatment temperature, the better mechanical properties of PDRC were observed because there was less agglomeration between silica particles. Specially, PDRC using a silica treated at $600^{\circ}C$ showed superior mechanical strength.

Study on the Direct Tensile Test for Cemented Soils Using a Built-In Cylinder (내장형 실린더를 이용한 시멘트 고결토의 인장시험 방법에 관한 연구)

  • Park, Sung-Sik;Lee, Jun-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1505-1516
    • /
    • 2014
  • In this study, a cylinder embedded within cemented soils was used to cause directly tensile failure of cemented soils. An existing dumbbell type direct tensile test and a split tensile test that is most general indirect tensile test were also carried out to verify the developed built-in cylinder tensile test. Testing specimens with two different sand/cement ratios (1:1 and 3:1) and two curing periods (7 and 28 days) were prepared and tested. Total 10 specimens were prepared for each case and their average value was evaluated. Unconfined compression tests were also carried out and the ratio of compressive strength and tensile strength was evaluated. The tensile strength determined by built-in cylinder tensile test was slightly higher than that by dumbbell type direct tensile test. The dumbbell type test has often failed in joint part of specimen and showed some difficulty to prepare a specimen. Among three tensile testing methods, the standard deviation of tensile strength by split tensile test was highest. It was shown that the split tensile test is applicable to concrete or rock with elastic failure but not for cemented soils having lower strength.

Bonding efficacy of cured or uncured dentin adhesives in indirect resin (간접 레진수복시 상아질 접착제의 중합 여부에 따른 결합 효능)

  • Jang, Ji-Hyun;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.6
    • /
    • pp.490-497
    • /
    • 2011
  • Objectives: This study examined the effect of the uncured dentin adhesives on the bond interface between the resin inlay and dentin. Materials and Methods: Dentin surface was exposed in 24 extracted human molars and the teeth were assigned to indirect and direct resin restoration group. For indirect resin groups, exposed dentin surfaces were temporized with provisional resin. The provisional restoration was removed after 1 wk and the teeth were divided further into 4 groups which used dentin adhesives (OptiBond FL, Kerr; One-Step, Bisco) with or without light-curing, respectively (Group OB-C, OB-NC, OS-C and OS-NC). Pre-fabricated resin blocks were cemented on the entire surfaces with resin cement. For the direct resin restoration groups, the dentin surfaces were treated with dentin adhesives (Group OB-D and OS-D), followed by restoring composite resin. After 24 hr, the teeth were assigned to microtensile bond strength (${\mu}TBS$) and confocal laser scanning microscopy (CLSM), respectively. Results: The indirect resin restoration groups showed a lower ${\mu}TBS$ than the direct resin restoration groups. The ${\mu}TBS$ values of the light cured dentin adhesive groups were higher than those of the uncured dentin adhesive groups (p < 0.05). CLSM analysis of the light cured dentin adhesive groups revealed definite and homogenous hybrid layers. However, the uncured dentin adhesive groups showed uncertain or even no hybrid layer. Conclusions: Light-curing of the dentin adhesive prior to the application of the cementing material in luting a resin inlay to dentin resulted in definite, homogenous hybrid layer formation, which may improve the bond strength.

Physical Properties of Different Automixing Resin Cements and the Shear Bond Strength on Dentin (수종 Automixing 레진시멘트의 물성과 상아질에 대한 전단결합강도)

  • Song, Chang-Kyu;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different automixing resin cements and the shear bond strength on dentin. For this study, two self-adhesive automixing resin cement(Rely-X Unicem(3M ESPE, St. Paul, USA), Embrace resin cement(Pulpdent, Oakland, USA)) and one chemical polymerizing resin cement(Resiment Ready-Mix(J.L.Blosser Inc., Liberty Missouri, USA)) were used. To evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. The specimens were fabricated using Teflon mould according to manufacturers' instructions and stored for 24 hours in an atmosphere of 100% humidity. To evaluate the shear bond strength on dentin, each cements were adhered to buccal dentinal surface of extracted human lower molars in 2mm diameter. Physical properties and shear bond strengths were measured using universal testing machine(Z010, Zwick GmbH, Ulm, Germany) at a crosshead speed of 0.5mm/min. The physical properties and shear bond strength of different automixing resin cements were statistically analyzed and compared between groups using One-way ANOVA test and Schffe post-hoc test at the 95% level of confidence. The result shows that chemical polymerizing automixing resin cement represents the relatively higher physical properties and shear bond strength than self-adhesive automixing resin cements.

Binder Stiffness Effect on Permanent Deformation and Tensile Strength of Asphalt Concretes (바인더 강성이 아스팔트 콘크리트의 인장강도와 소성변형 특성에 미치는 영향 분석)

  • Kim, Hyun-Hwan;Yoo, Min-Yong;Kim, Jin-Chul;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • Since the relatively stiff binder shows a higher tensile strength as well as higher rutting resistance, it is believed that the binder stiffness is an important factor for rutting and tensile strength of asphalt mixtures. The typical tensile property is measured by indirect tensile strength (ITS) test at $25^{\circ}C$ and the rutting resistance is most widely measured by wheel tracking (WT) test at $60^{\circ}C$. The deformation strength ($S_D$) is newly developed property to estimate rut resistance of asphalt concretes at $60^{\circ}C$. The ITS and $S_D$ are very simple to measure by static test techniques, but the WT is measured by repeated loading procedure which requires relatively longer time and more efforts. Since these three properties are highly dependent upon the binder stiffness, it may be possible to estimate one property from another. Therefore, this study investigate the possibility of estimating the rutting characteristics (measured by WT test) by ITS or $S_D$ test, and the ITS by $S_D$. Because of binder stiffness effect, in the WT estimation by ITS, a tendency was observed for the higher ITS mixture to have the lower rut depth, giving $R^2{\fallingdotseq}$0.6, on the average. The ITS estimation by $S_D$ showed $R^2{\fallingdotseq}$0.64, and the WT estimation by SD showed $R^2{\fallingdotseq}$0.84, which is highest correlation among the three. Therefore, it was concluded that there is relatively good possibility of estimating WT result by $S_D$, and even though $R^2$ is somewhat low, there is some correlation between WT and ITS.

The Effect of Bonding Resin on Bond Strength of Dual-Cure Resin Cements (접착레진의 부가도포가 레진 시멘트의 결합강도에 미치는 영향에 대한 연구)

  • Kim, Duck-Su;Park, Sang-Hyuk;Choi, Gi-Woon;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.426-436
    • /
    • 2007
  • The objective of this study is to evaluate the effect of an additional application of bonding resin on the bond strength of resin luting cements in both the light-cure (LC) and self-cure (SC) modes by means of the ${\mu}TBS$ tests. Three combinations of One-Step Plus with Choice, Single Bond with Rely X ARC, and One-Up Bond F with Bistite II were used. D/E resin and Pre-Bond resin were used for the additional application. Twelve experimental groups were made. Three mandibular $3^{rd}$ molars were used in each group. Indirect composite blocks were cemented on the tooth surface. $1\;{\times}\;1\;mm^2$ dentin-composite beam for ${\mu}TBS$ testing were made and tested. When total-etching dentin adhesives were used, an additional application of the bonding resin increased the bond strength (P < 0.05). However, this additional application didn't influence the bond strength of self-etching dentin adhesives (P > 0.05). In conclusion, the results suggest that an additional application of the bonding resin increases bond strength and enhances quality of bonding when using total-etching dentin adhesives.