• Title/Summary/Keyword: 간극수

Search Result 118, Processing Time 0.027 seconds

Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature (저온 소성 굴 패각의 피복에 의한 연안 오염 퇴적물의 성상 변화에 관한 연구)

  • Kim, Hyung-Chul;Woo, Hee-Eun;Jeong, Ilwon;Oh, Seok-Jin;Lee, Seong-Ho;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • In this study, pyrolyzed oyster shells at a low temperature ($350^{\circ}C$) were applied for a mesocosm experiment to confirm resulting changes in the properties of sediment. After creating a covering of oyster shells, an increase in ORP and decrease in ammonia in the overlying water was observed in an experimental case. The decrease of TOC in this experiment was due to the dilution of organic matter due to the addition of inorganic matter (pyrolyzed oyster shells). The decrease in the concentration of AVS was observed due to the adsorption of AVS by the surface of the oyster shells. From the results obtained in this experiment, it has been concluded that pyrolyzed oyster shells at a low temperature can be used for remediation of polluted sediment.

Experimental Assessment and Specimen Height Effect in Frost Heave Testing Apparatus (동상시험장비의 실험적 검증 및 시료크기의 영향에 관한 연구)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Frost heave is one of the representative engineering characteristics in cold regions. In South Korea, which is located in seasonal frost area, structural damage caused by frost heave and thaw happens and the need for research on the frost heave is increasing. In this paper, newly developed transparent temperature-controllable cell is used to focus on the frost heave. Frost susceptible artificial soil is used to analyze water intake rate which is one of the important factors in frost susceptibility criteria. Frost heave rate and water intake rate have similar behavior after heave by freezing of pore water converges. O-ring installed in the upper pedestal to measure water intake rate generates side friction between the inner wall of the freezing cell and O-ring, thereby hindering frost heave. Therefore, the frost susceptibility criteria using the water intake rate is not reliable. It is appropriate to use frost heave rate which has similar behavior with water intake rate. Frost heave tests were performed under two different specimen heights. Overburden pressure, temperature gradient and dry unit weight were set under similar state. Based on laboratory testing results, frost heave is independent on the specimen height.

Evaluation of Low-temperature Compaction Characteristics According to Organic Matter Content through Laboratory Compaction Tests (실내 다짐시험을 통한 유기물 함량에 따른 저온 다짐 특성 분석)

  • Choi, Hyun-Jun;Kim, Sewon;Lee, Seungjoo;Park, Hyeontae;Choi, Hangseok;Kim, YoungSeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • Pore water freezes in low-temperature compaction, which leads to different compaction characteristics compared to room temperature conditions. In regions like Alberta, Canada, where organic soils are prevalent, compaction performance is influenced by the high water retention and compressibility of organic soils, as well as their sensitivity to freezing and thawing. Alberta's strict environmental regulations demand the reuse of excavated soil for backfill, and the long winter season creates challenging conditions for civil engineering projects. In this study, a laboratory compaction test was conducted to evaluate the low-temperature compaction characteristics of organic soils with varying organic content. The results indicate that the optimum moisture content increases as the organic content increases, and the maximum dry unit weight decreases by up to 21.9%. In addition, under temperature conditions below -4℃, no optimum moisture content was observed, and the dry unit weight decreased as the moisture content increased.

Evaluation of Characteristics of Re-liquefaction Resistance in Saturated Sand Deposits Using 1-g Shaking Table Test (1-g 진동대시험을 이용한 포화된 모래지반의 재액상화 강도 특성 평가)

  • Ha Ik-Soo;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • Many case histories of re-liquefaction phenomena seem to support the idea that sand deposits, if they once have been liquefied, could be reliquefied again by a subsequent earthquake even though the earthquake is smaller than the previous one. The magnitude of the strains induced in the initial liquefaction has a significant influence on the resistance of the sample to re-liquefaction. The deposits undergoing liquefaction experience large shear strain during liquefaction. And this previous strain changes the microstructure into highly anisotropic structure such as columnlike structure and connected voids. This type of anisotropy is so unstable that it can reduce re-liquefaction resistance. It is blown that the extent of anisotropic structural change depends on the gradation characteristics of ground. The purpose of this study is to estimate the correlation between the gradation characteristics of the sand and the ratio of re-liquefaction resistance to liquefaction resistance. In this study, 1-g shaking table tests were carried out on five different kinds of sands. During the tests the values of excess pore pressure at various depths and surface settlements were measured. Re-liquefaction resistances were not affected by the initial void ratio and the effective confining pressures, and the deposits of all test sands which had once been liquefied were reliquefied in the cyclic loading number below 1 to 1.5. The ratio of re-liquefaction resistance to liquefaction resistance linearly decreased as $D_{10}/C_u$ increased, and was constant as about 0.2 above the value of $D_{10}/C_u$, 0.15 mm.

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

A Taxonomic Study of the Genera Acanthogobius and Synechogobius (Pisces : Gobiidae) from Korea (한국산(韓國産) 문절망둑 속(屬)과 풀망둑속(屬) 어류(魚類)의 분류학적(分類學的) 연구(硏究))

  • Lee, Yong-Joo
    • Korean Journal of Ichthyology
    • /
    • v.4 no.2
    • /
    • pp.1-25
    • /
    • 1992
  • Taxonomic study of the five species (Acanthogobius elongata, A. flavimanus, A. lactipes, A. luridus and Synechogobius) from Korea was carried out based on morphometric, cephalic sensory canal and ecological characters. Taxonomic revision and classificational keys are provided. Synechogobius hasta is easily distinguished from four species of the genus Acanthogobius in eleven characters, i. e., the number of dorsal and anal fin rays, the transverse scales, the vertebral numbers, the formula of interneural spine of the first dorsal fin, the number of interhemal spine anterior to the first hemal spine, the number of epipleural and pleurals, the ratio of caudal peduncle length, the ratio of caudal peduncle depth and the regular variations in the ratio of body parts with the body length. In the genus Acanthobobius, A. elongata is distinguished from other 3 congeneric species in the ratio of body parts and the oculoscapular sensory canal. Moreover, A. flavimanus differs from other 3 congeneric species in the lateral scales, the transverse scales, the number of predorsal scales, the vertebral number, the number of epipleural and pleurals. Sensory papillae rows of S. hasta is not similar that of the genus Acanthogobius in having a singular sensroy papillae rows. A. elongata has no oculoscapular sensory canal D and A. flavimanus has transverse sensory papillae in cheek, and these are one of the unique characters distinguished form other congeneric species. In the spawning period inferred from gonadosomatic index, A. elongata varied from late March to late June ; A. flavimanus, January to April ; A. lactipes, May to September ; A. luridus, early May to early July and S. hasta, early March to early May.

  • PDF

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.