분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 선형적인 분포 모양을 가진다는 가정에 기초한 새로운 접근의 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 원격탐사 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다. 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 해결하지 못한 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였으며, 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적인 면에서도 우수한 결과를 도출함을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.790-792
/
2004
본 논문은 PCM(Possibilistic C-Means) 알고리즘과 베이시안 분류 알고리즘을 통합한 고해상도 위성영상의 효과적인 분류방법을 제안하였다. 제안된 알고리즘은 학습데이터를 참고로 하여 PCM 알고리즘을 반복적인 과정 없이 수행한다. 각 분류항목별로 분류된 데이터에서 평균내부거리 내부에 해당되는 데이터들을 선정하여 각 항목별 비율을 구한 후 베이시안 분류기법의 사전확률로 적용하여 분류를 수행한다 PCM 알고리즘은 각 데이터와 특정 클러스터와의 거리에 소속도를 부여하는 퍼지 C-Means 알고리즘과 달리 소속도를 각 데이터와 클러스터 중심간의 절대거리에 의존하는 방법으로 퍼지 C-Means 알고리즘이 가지는 상대성 문제를 해결하였다. 제안된 분류 기법을 고해상도 다중분광 데이터인 IKONOS 위성영상에 적용하여 분류를 수행한 후 최대우도 분류기법과 비교한다.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.281-283
/
2000
인터넷은 단순한 정보 교환의 수단이 아니라 기업들의 이윤 창출을 위한 새로운 공간이 되고 있으며 수많은 쇼핑몰들이 이를 설명해 주고 있다. 하지만 분류체계 측면에서 각 쇼핑몰들이 제공하고 있는 분류체계에는 크게 다음 두 가지의 문제점이 있다. 첫째로 각 쇼핑몰마다 서로 다른 자기만의 상품 분류체계를 가지고 있다는 점이다. 이로 인해 쇼핑몰을 이용하고자 하는 사용자는 각 쇼핑몰을 방문할 때마다 혼란스러울 수 밖에 없다. 두 번째는 각 쇼핑몰이 제공하고 있는 분류체계는 정적인 형태만을 띄고 있다는 점이다. 따라서 사용자는 이미 정해져 있는 상품에 대한 분류의 체계만을 좋건 싫건 간에 따라야 한다. 따라서 이러한 문제들을 해결하기 위하여 본 논문에서는 규칙이라는 추가 정보를 가지도록 모델링된 쇼핑몰의 분류체계들에 대하여 자동적인 통합의 기법을 제시한다. 제시된 기법에 의하여 쇼핑몰 사용자들에게 모든 쇼핑몰의 통합된 뷰의 제공, 사용자별 분류체계의 생성, 메타 쇼핑몰 간의 통일된 인터페이스 제공 등을 할 수 있다.
This paper presents a parallel sorting algorithm suitable for the SIMD multiprocessor. The algorithm finds pivots for partitioning the data into ordered subsets. The data can be evenly distributed to be sorted since it uses the probability theory. For n data elements to be sorted on p processors, when $n{\geq}p^2$, the algorithm is shown to be asymptotically optimal. In practice, sorting 8 million data items on 64 processors achieved a 48.43-fold speedup, while the PSRS required a 44.4-fold speedup. On a variety of shared and distributed memory machines, the algorithm achieved better than half-linear speedups.
The classification is an important activity that is directly related to concept formation. Thus it will need to be made meaningful learning to classification through learner-centered teaching. But we doubts weather teaching and learning to the classification are reflected in the constructivist philosophy of 'learner-centered' well or not. The purpose of this study was to analyze critically the content of elementary textbooks and guidebook for teachers relating to the classification of angles and triangles in terms of constructivism. As a result, there is a problem in the classification of angles that are not provided a reasonable chance to set criteria by agreement of the communities. There is a problem in the classification of triangles that has the characteristics of radical development in terms of diversity. In addition, response of students was predicted like anyone who already acquired knowledge. And it has the shortcomings that the opportunity to have a choice and a discussion to hierarchical and partition classification are not provided. The followings are proposed based on such features; faithful reflection of 'Learner-centered' principle, careful prediction of student response, teaching that focus on process than results.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.250-252
/
2003
패턴 인식 분야에서 다중 분류기 시스템은 여러 분류기의 결과들을 조합하여 전체 성능을 항상 시키는 시스템이다. 다중 분류기를 사용함으로써 단일 분류기 보다 더 나은 결과를 얻을 수 있음은 이미 널리 알려진 사실이다. 서로 다른 구조를 갖는 분류기들은 상호 보완적인 정보를 제공하기 때문에 각 분류기마다 입력 공간에 대해서 지역적으로 좋은 성능을 갖는다. 본 논문에서는 지역적으로 가장 좋은 성능을 보이는 분류기 선택 방법을 제안한다. 제안하는 방법은 주어진 입력 공간에 비해 각 분류기들을 학습하는 과정에서 자기조직화지도를 생성하고 각 노드별로 평가함으로써 입력이 주어지면, 해당 노드에서 가장 성능이 좋은 분류기를 선택하여 전체 성능을 향상시키는 시스템이다.
The classification using spectral angle is a new approach based on the fact that the spectra of the same type of surface objects in RS data are approximately linearly scaled variations of one another due to atmospheric and topographic effects. There are many researches on the unsupervised classification using spectral angle recently. Nevertheless, there are only a few which consider the characteristics of Hyperspectral data. On this study, we propose the ISOMUSAC(Iterative Self-Organizing Modified Unsupervised Spectral Angle Classification) which can supplement the defects of previous unsupervised spectral angle classification. ISOMUSAC uses the Angle Division for the selection of seed points and calculates the center of clusters using spectral angle. In addition, ISOMUSAC perform the iterative merging and splitting clusters. As a result, the proposed algorithm can reduce the time of processing and generate better classification result than previous unsupervised classification algorithms by visual and quantitative analysis. For the comparison with previous unsupervised spectral angle classification by quantitative analysis, we propose Validity Index using spectral angle.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2001.06a
/
pp.169-172
/
2001
본 논문에서는 회전된 문서에서의 회전각 검출과 문서에 포함된 그림, 글자, 표, 직선과 같은 구성요소를 자동으로 분석하고 분류하는 방법을 제안한다. 본 연구는 입력영상을 획득하는 과정에서 발생되는 회전각에 의해 발생되는 오류를 최소화하기 위한 회전각 검출단계, 각 구성요소 검출에 불필요한 배경제거 단계, 각 구성요소의 특성을 통한 구성요소 분류단계로 이루어진다. 제안한 문서 인식 시스템의 성능 평가를 위해서 다양 한 문서에 제안한 방법을 적용하고, 성공적인 결과를 보인다.
Proceedings of the Korea Society for Simulation Conference
/
2000.11a
/
pp.186-191
/
2000
요에 함유된 여러 성분들의 영향에 의해 다양한 정적 특성을 나타내는 요분석용 스트립의 화학적인 변화 양상을 요분석 시스템을 사용하여 요분석용 스트립의 각 항목별 각 등급별을 정성적 및 반정량적 분석을 하기 위하여 퍼지 알고리듬을 제안하고, 퍼지 분류기를 구현한 후 구현된 분류기를 검증하기 위하여 시뮬레이션 하였다. 이를 위하여 다음과 같은 연구를 수행하였다. 표준시료를 사용하여 요분석용 스트립의 분광학적 분석에 의한 퍼지 입력 변수, 퍼지 멤버쉽함수 및 퍼지규칙을 생성하였다. 그리고 구현된 분류기를 사용하여 각 항목별과 각 등급별로 평가하였다. 평가 결과 요분석용 스트립의 항목별 음성과 양성의 판별에서는 우수한 결과가 나왔으나, 정량적 분석을 위한 각 항목별 등급의 분류에서는 측정값의 오차로 인해 최고 8%의 오차가 발생하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.224-227
/
2022
객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.