• Title/Summary/Keyword: 각의 분류

Search Result 5,766, Processing Time 0.032 seconds

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo, Hyun-Gee;Kim, Dae-Sung;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.41-45
    • /
    • 2005
  • 분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 선형적인 분포 모양을 가진다는 가정에 기초한 새로운 접근의 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 원격탐사 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다. 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 해결하지 못한 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였으며, 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적인 면에서도 우수한 결과를 도출함을 확인할 수 있었다.

  • PDF

Integrating Classification Method using PCM Algorithm and Bayesian Method (PCM 알고리즘과 베이시안 분류의 통합기법)

  • 전영준;김진일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.790-792
    • /
    • 2004
  • 본 논문은 PCM(Possibilistic C-Means) 알고리즘과 베이시안 분류 알고리즘을 통합한 고해상도 위성영상의 효과적인 분류방법을 제안하였다. 제안된 알고리즘은 학습데이터를 참고로 하여 PCM 알고리즘을 반복적인 과정 없이 수행한다. 각 분류항목별로 분류된 데이터에서 평균내부거리 내부에 해당되는 데이터들을 선정하여 각 항목별 비율을 구한 후 베이시안 분류기법의 사전확률로 적용하여 분류를 수행한다 PCM 알고리즘은 각 데이터와 특정 클러스터와의 거리에 소속도를 부여하는 퍼지 C-Means 알고리즘과 달리 소속도를 각 데이터와 클러스터 중심간의 절대거리에 의존하는 방법으로 퍼지 C-Means 알고리즘이 가지는 상대성 문제를 해결하였다. 제안된 분류 기법을 고해상도 다중분광 데이터인 IKONOS 위성영상에 적용하여 분류를 수행한 후 최대우도 분류기법과 비교한다.

  • PDF

Automatic Category Merging Technique Electronic Commerce (전자상거래 환경에서의 분류체계 자동 통합 기법)

  • 김재범;김동규;이상구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.281-283
    • /
    • 2000
  • 인터넷은 단순한 정보 교환의 수단이 아니라 기업들의 이윤 창출을 위한 새로운 공간이 되고 있으며 수많은 쇼핑몰들이 이를 설명해 주고 있다. 하지만 분류체계 측면에서 각 쇼핑몰들이 제공하고 있는 분류체계에는 크게 다음 두 가지의 문제점이 있다. 첫째로 각 쇼핑몰마다 서로 다른 자기만의 상품 분류체계를 가지고 있다는 점이다. 이로 인해 쇼핑몰을 이용하고자 하는 사용자는 각 쇼핑몰을 방문할 때마다 혼란스러울 수 밖에 없다. 두 번째는 각 쇼핑몰이 제공하고 있는 분류체계는 정적인 형태만을 띄고 있다는 점이다. 따라서 사용자는 이미 정해져 있는 상품에 대한 분류의 체계만을 좋건 싫건 간에 따라야 한다. 따라서 이러한 문제들을 해결하기 위하여 본 논문에서는 규칙이라는 추가 정보를 가지도록 모델링된 쇼핑몰의 분류체계들에 대하여 자동적인 통합의 기법을 제시한다. 제시된 기법에 의하여 쇼핑몰 사용자들에게 모든 쇼핑몰의 통합된 뷰의 제공, 사용자별 분류체계의 생성, 메타 쇼핑몰 간의 통일된 인터페이스 제공 등을 할 수 있다.

  • PDF

Parallel Sorting Algorithm by Median-Median (중위수의 중위수에 의한 병렬 분류 알고리즘)

  • Min, Yong-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.14-21
    • /
    • 1995
  • This paper presents a parallel sorting algorithm suitable for the SIMD multiprocessor. The algorithm finds pivots for partitioning the data into ordered subsets. The data can be evenly distributed to be sorted since it uses the probability theory. For n data elements to be sorted on p processors, when $n{\geq}p^2$, the algorithm is shown to be asymptotically optimal. In practice, sorting 8 million data items on 64 processors achieved a 48.43-fold speedup, while the PSRS required a 44.4-fold speedup. On a variety of shared and distributed memory machines, the algorithm achieved better than half-linear speedups.

  • PDF

Analysis of Elementary Textbooks and Guidebook for Teacher regarding the Classification of Angles and Triangles in the Constructivist Perspective (구성주의 관점에서 각과 삼각형의 분류에 관한 초등 교과서 및 교사용지도서 분석)

  • Roh, Eun Hwan;Kang, Jeong Gi
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.313-330
    • /
    • 2015
  • The classification is an important activity that is directly related to concept formation. Thus it will need to be made meaningful learning to classification through learner-centered teaching. But we doubts weather teaching and learning to the classification are reflected in the constructivist philosophy of 'learner-centered' well or not. The purpose of this study was to analyze critically the content of elementary textbooks and guidebook for teachers relating to the classification of angles and triangles in terms of constructivism. As a result, there is a problem in the classification of angles that are not provided a reasonable chance to set criteria by agreement of the communities. There is a problem in the classification of triangles that has the characteristics of radical development in terms of diversity. In addition, response of students was predicted like anyone who already acquired knowledge. And it has the shortcomings that the opportunity to have a choice and a discussion to hierarchical and partition classification are not provided. The followings are proposed based on such features; faithful reflection of 'Learner-centered' principle, careful prediction of student response, teaching that focus on process than results.

Dynamic Classifier Selection Using Self-Organizing Maps (자기조직화지도를 이용한 동적 분류기 선택(1))

  • 이관희;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.250-252
    • /
    • 2003
  • 패턴 인식 분야에서 다중 분류기 시스템은 여러 분류기의 결과들을 조합하여 전체 성능을 항상 시키는 시스템이다. 다중 분류기를 사용함으로써 단일 분류기 보다 더 나은 결과를 얻을 수 있음은 이미 널리 알려진 사실이다. 서로 다른 구조를 갖는 분류기들은 상호 보완적인 정보를 제공하기 때문에 각 분류기마다 입력 공간에 대해서 지역적으로 좋은 성능을 갖는다. 본 논문에서는 지역적으로 가장 좋은 성능을 보이는 분류기 선택 방법을 제안한다. 제안하는 방법은 주어진 입력 공간에 비해 각 분류기들을 학습하는 과정에서 자기조직화지도를 생성하고 각 노드별로 평가함으로써 입력이 주어지면, 해당 노드에서 가장 성능이 좋은 분류기를 선택하여 전체 성능을 향상시키는 시스템이다.

  • PDF

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo Hyun-Gee;Kim Dae-Sung;Yu Ki-Yun;Kim Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.111-121
    • /
    • 2006
  • The classification using spectral angle is a new approach based on the fact that the spectra of the same type of surface objects in RS data are approximately linearly scaled variations of one another due to atmospheric and topographic effects. There are many researches on the unsupervised classification using spectral angle recently. Nevertheless, there are only a few which consider the characteristics of Hyperspectral data. On this study, we propose the ISOMUSAC(Iterative Self-Organizing Modified Unsupervised Spectral Angle Classification) which can supplement the defects of previous unsupervised spectral angle classification. ISOMUSAC uses the Angle Division for the selection of seed points and calculates the center of clusters using spectral angle. In addition, ISOMUSAC perform the iterative merging and splitting clusters. As a result, the proposed algorithm can reduce the time of processing and generate better classification result than previous unsupervised classification algorithms by visual and quantitative analysis. For the comparison with previous unsupervised spectral angle classification by quantitative analysis, we propose Validity Index using spectral angle.

Component Analysis and Classification for Rotated Document Image (회전된 문서영상에서의 구성요소 분석 및 분류)

  • 모문정;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.169-172
    • /
    • 2001
  • 본 논문에서는 회전된 문서에서의 회전각 검출과 문서에 포함된 그림, 글자, 표, 직선과 같은 구성요소를 자동으로 분석하고 분류하는 방법을 제안한다. 본 연구는 입력영상을 획득하는 과정에서 발생되는 회전각에 의해 발생되는 오류를 최소화하기 위한 회전각 검출단계, 각 구성요소 검출에 불필요한 배경제거 단계, 각 구성요소의 특성을 통한 구성요소 분류단계로 이루어진다. 제안한 문서 인식 시스템의 성능 평가를 위해서 다양 한 문서에 제안한 방법을 적용하고, 성공적인 결과를 보인다.

  • PDF

Simulation on Classifier of Urine Analysis System using Fuzzy Inference (퍼지추론을 이용한 요분석 시스템 분류기의 시뮬레이션)

  • 이승진;김기련;민상기;김봉수;이영우;김재형;전계록
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.186-191
    • /
    • 2000
  • 요에 함유된 여러 성분들의 영향에 의해 다양한 정적 특성을 나타내는 요분석용 스트립의 화학적인 변화 양상을 요분석 시스템을 사용하여 요분석용 스트립의 각 항목별 각 등급별을 정성적 및 반정량적 분석을 하기 위하여 퍼지 알고리듬을 제안하고, 퍼지 분류기를 구현한 후 구현된 분류기를 검증하기 위하여 시뮬레이션 하였다. 이를 위하여 다음과 같은 연구를 수행하였다. 표준시료를 사용하여 요분석용 스트립의 분광학적 분석에 의한 퍼지 입력 변수, 퍼지 멤버쉽함수 및 퍼지규칙을 생성하였다. 그리고 구현된 분류기를 사용하여 각 항목별과 각 등급별로 평가하였다. 평가 결과 요분석용 스트립의 항목별 음성과 양성의 판별에서는 우수한 결과가 나왔으나, 정량적 분석을 위한 각 항목별 등급의 분류에서는 측정값의 오차로 인해 최고 8%의 오차가 발생하였다.

  • PDF

Object Classification with Angular Margin Loss Function (각도 마진 손실 함수를 적용한 객체 분류)

  • Park, Seonji;Cho, Namik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.224-227
    • /
    • 2022
  • 객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.

  • PDF