• Title/Summary/Keyword: 가축분 퇴비시용

Search Result 43, Processing Time 0.018 seconds

Fractional Recovery as Extractable Form of Nutrient in Composted Livestock Manure Application on Soil Distributed in jeju (제주 토양에서 시용한 가축분 중 양분의 유효화율)

  • Hwang, Ki-Sung;Lee, In-Bog;Park, Jin-Myean;Yoo, Bong-Sick
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • This study was conducted to determine effects of composted livestock manure application on soil nutrient change. PVC pot $(30\times100cm)$ was filled with either volcanic ash soil (Gujwa series) or non-volcanic ash soil (Aewol series) and the 20 cm surface soils were applied with composted livestock manures of cattle pig and poultry at the rates of 0, 50, 100 and 150 ton/ha, respectively. After 210 days soils samples of phosphate, potassium, calcium, and magnesium affected by application of the compost. The applied composted were equivalent to the application of organic matter of $23\sim111$ ton/ha and nitrogen of $80\sim450$ ton/ha. Availability rate of phosphate after the application of composted livestock manures ranged from 1.6 to 91.7% according to the different composted. It was much higher in the non-volcanic ash soil than in the volcanic ash soil. Availability rate of potassium fractional recovery rate change ranged from 22 to 94% according to the different manures. It was larger in the composted Availability rate of calcium 38 to 93% and $9\sim90%$ in volcanic ash soil and non-volcanic ash soil, respectively, It was higher in the composted manures followed by cattle and composted pig manures. Availability rate magnesium ranged from 12 to 41% and $1\sim9%$ in volcanic ash soil and non-volcanic ash soil, respectively. The rate was higher in the composted poultry manure followed by pig and composted cattle manures.

Changes of Electrical Conductivity and Nitrate Nitrogen in Soil Applied with Livestock Manure (가축분 퇴비 시용에 따른 밭 토양의 EC 및 질산태질소 함량 변화)

  • Hwang, Ki-Sung;Ho, Qyo-Soon;Kim, Hyoung-Deug;Choi, Ju-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.197-201
    • /
    • 2002
  • This study was conducted in Jeju Island to find the effects of livestock manure application on the changes in soil salt concentration and $NO_3-N$ contents. Soil samples were collected from Goojua-Tong (volcanic ash soil) and Aewol-Tong(non-volcanic ash soil) to 50 cm depth and were mixed with livestock manure to 20 cm depth in PVC container(30 cm diameter, 1 m height). Animal manures of cattle, pig, and fowl were adjusted to 0, 50, 100,150 ton/ha. Animal manure applications increased the salt concentrations in soil. The salt concentration was increased as the fowl manure amount was increased The effects were larger in order of fowl manure > cattle manure $\fallingdotseq$ pig manure. $NO_3-N$ contents in soil showed a sharp increase by applications of fowl manure, but the increase was slow when the cattle and pig manures were applied. In volcanic ash soil, there was no change in phosphate contents by application of animal manures, but the phosphate contents increased in non-volcanic ash soil with the application of animal manure, especially by fowl manure.

Effect of Application Level of Animal Manure on the Nitrate Concentration, Sugar Content and Intake of Forage Sorghum X Sudangrass Hybrid (가축분 시용수준이 수수 X 수단그라스 교잡종의 질산태질소 함량과 당도 및 채식률에 미치는 영향)

  • Seo, S.;Kim, J.G.;Chung, E.S.;Kim, W.H.;Choi, G.J.;Lee, J.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • A field experiment was carried out to determine the effect of application level of animal manure on the nitrate nitrogen concentration, sugar content and animal intake of forage sorghum $\times$ sudangrass hybrid (Sorghum bicolor (L.) Moench, cv. Pionee. 988) in 1995. The application amount of animal manure were 50, 100 and 150MT in cattle manure, 20, 40 and 80MT in swine manure, and 10, 20 and 40MT/ha in poultry manure. Non-application plot(control) was involved. The nitrate nitrogen concentration was increased with increasing of application level of animal manure(P<0.05). Average nitrate nitrogen concentration was 397, 512, and 609mg/kg at low, medium and high application level of animal manure. The nitrate nitrogen concentration by plant height was 438mg/kg at 50~60m of plant height, 454mg at 100~120cm, and 418mg at 200~220cm. The nitrate nitrogen concentration of stems was 376mg, and significantly higher than that(135mg) of leaves(P<0.05) regardless of animal manure type, and lower parts of stems and leaves were significantly higher than those of upper parts of plants(P<0.05). Average nitrate nitrogen concentration of leaves was 151mg at lower, and 58mg at upper parts of plants, and the concentration of stems was 357mg at lower, 511mg at middle, and 610mg at upper parts of plants. The sugar contents of sorghum $\times$ sudangrass hybrid was decreased with increasing of application level of animal manure(P<0.05). Average sugar content was 4.9, 4.4, and 4.3。 at low, medium and high application level of animal manure. The sugar content by plant height was 3.9。 at 50~60 and 100~120cm of plant height, and 6.1。 at 200~220cm of plant height. Animal intake of sorghum $\times$ sudangrass hybrid was decreased greatly with increasing of application level of animal manure. Average intake was 73.9, 55.7, and 52.3% at low, medium and high application level of animal manure. The intake by animal manure type was 73.7% in cattle, 59.7% in swine and 62.5% in poultry manure.

Aspects of Nutrient Transportation after Animal Manure Application in Jeju Field Soil (제주 밭토양에서 가축분 퇴비의 시용에 따른 양분의 이동양상)

  • Hwang, Ki-Sung;Ho, Qyo-Soon;Yoo, Bong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.133-137
    • /
    • 2004
  • Recently, saw dust manure has been widely used in horticultural crop production in Korea. Animal manure is produced by decaying of livestock manure mixed with saw dust, and contained higher nutrients and ion concentration than the traditional manure made from rice straw and grasses. Therefore, a continuous application of the animal manure disregarding to soil characteristics may be ruined the soil conditions. This study was conducted to investigate the transportation of the nitrogen, phosphate, potassium, and ion concentration of the animal manure applied to volcanic and non-volcanic soils in Jeju islana Soil chemical analysis were done before and 180 days after animal manure application. After animal manure application, $NO_3$-N moved up to 90cm in volcanic soil, while the movement was limited to 60 cm in non-volcanic soil. Phosphate concentration was high up to 30 cm, where crop roots are mainly distributed, in volcanic soil, however, the phosphate moved up to 60 cm in volcanic soil. Exchangeable potassium moved up to 90 cm in volcanic soil, but the movement wns limited up to 60 cm in non-volcanic soil. For both soil types, no significant different in ion concentrations was observed up to 60 cm in soil depth, though the concentrations were higher in volcanic ash soils as compared to the non-volcanic ash soils.

Monitoring for Change of Soil Characteristics by repeated Organic Supply of Comport and Green Manures in Newly reclaimed Organic Upland Field (신규 개간 유기농경지에서 가축분 퇴비와 녹비작물 연용에 따른 밭 토양의 이화학적 특성 변화 모니터링)

  • Ok, Jung-Hun;Cho, Jung-Lai;Lee, Byung-Mo;An, Nan-Hee;Shin, Jae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.813-827
    • /
    • 2015
  • This study was conducted to evaluate the effect of organic inputs on soil properties in a newly reclaimed organic soils. The soil of the experiment site was very low in soil fertility and the physico-chemical properties were poor. Several organic input treatments with different source of nutrient were placed, including compost in combination with green manures for organic agricultural practices, chemical fertilizers for conventional agricultural practices, and control without fertilizer. The experiment was conducted with continuous cropping system during 3 years. The chemical properties concentration in compost+green manure treatment was increased continually compare to control and chemical fertilizer treatment, and closed to the recommended rate of fertilizer. The organic matter value for compost+green manure treatment was increased from 0.86~0.96% to 2.00~2.29% by continuous nutrient supply of compost and green manure. However, further investigation on increasing of organic matter value for 3 years is necessary to monitor carefully during the long-term because it will help to clarify the all mechanisms of organic matter on organic input application way. The available phosphate value for compost+green manure treatment was generally increased from 21.9~27.1 mg/kg to 182.0~394.1 mg/kg. In case of exchange cation, the concentration for compost+green manure treatment was increased during 2 years within the range to the recommended rate of fertilizer, however, it is expected to cause a rather over supply for 3 years.

Nutrient Balance and Vegetable Crop Production as Affected by Different Sources of Organic Fertilizers (유기자원에 따른 양분수지 및 작물생산)

  • Agus, Fahmuddin;Setyorini, Diah;Hartatik, Wiwik;Lee, Sang-Min;Sung, Jwa-Kyung;Shin, Jae-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Understanding the net nutrient balance in a farming system is crucial in assessing the system's sustainability. We quantified N, P and K balances under vegetable organic farming in a Eutric Haplud and in West Java, Indonesia in five planting seasons from 2005 to 2007. The ten treatments and three replications, arranged in a completely randomized block design, included single or combined sources of organic fertilizers: barnyard manure, compos ts or green manures. The organic matter rates were adjusted every planting season depending on the previous crop responses. The result sshowed that the application of ${\geq}20$ t $ha^{-1}$ barnyard manure per crop resulted in positive balances of N, P, and K, except in the second crops of 2006 where potassium balance were -25 to -11 kg $ha^{-1}$ under the treatments involving cattle barnyard manure, because of low K content of these treatments and high K uptake by Chinese cabbage. Application of 20 to 25 t $ha^{-1}$ of plant residue or 5 t $ha^{-1}$ of Tithonia compost also resulted in a negative K balance. Soil available P increased significantly under ${\geq}25$ t $ha^{-1}$ barnyard manure and that under chicken manure had the highest available P. Accordingly, chicken barnyard manure gave the highest crop yield because of relatively higher N, P, and K contents. Plant residues gave the lowest yield due to the lowest nutrient content among all sources. Reducing the use of barnyard manure to 12.5 t $ha^{-1}$ and substituting it with Tithonia compost, Tithonia green manure or vegetable plant residue compost gave insignificantly different yield compared to the application of 25 t $ha^{-1}$ barnyard manure singly. In the long run, application of 25 t ha-1 cattle, goat, and horse manure or about 20 t $ha^{-1}$ chicken manure is recommendable for sustaining the fertility of this Andisol for vegetable production.

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Changes in Chemical Properties and Fauna of Plastic Film House Soil by Application of Chemical Fertilizer and Composted Pig Manure (시설재배지에서 화학비료와 돈분 퇴비시용에 따른 토양의 화학성 및 생물상 변화)

  • Kwak, Han-Kang;Seong, Ki-Seog;Lee, Nam-Jong;Lee, Sang-Beom;Han, Min-Su;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.304-310
    • /
    • 2003
  • Effects of different amounts of fertilizer and manure application on changes of chemical and biological properties of soil were studied in plastic film house. Application amount of fertilizer was determined on the basis of soil test, standard application rate, and conventional rate of farmers. Lettuce in the first and second seasons and spinach in the third season were cultivated. Crop yields were highest in the plot fertilized on the basis of soil test during the three crop seasons. In the third crop season, spinach yield was lower in conventional plot applied with larger amount of pig manure compost than any other treatment. Organic matter, available phosphorus, and exchangeable potassium were accumulated in soil of the conventional plot with successive cropping. There was no difference in the abundance of soil invertebrates among the treatments, but soil enzyme activity was highest in the conventional plot.

Effect on Nitrous Oxide Emission in Applying Livestock Manure Compost for Strawberry (Fragaria × ananassa Duch.) Cultivation in Plastic Film House (딸기(Fragaria × ananassa Duch.) 시설재배에서 가축분 퇴비 시용이 아산화질소 배출에 미치는 영향)

  • Lee, Chang-Kyu;Moon, Hyung-Cheol;Song, Eun-Ju;Choi, Seon-U;Ko, Do-Young;Chon, Hyong-Gwon;Yun, Seok-In
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.1
    • /
    • pp.111-123
    • /
    • 2021
  • This study was conducted to investigate the growth characteristics of strawberries and N2O emission by treating the compost for each type of livestock manure, which was an organic farming material, as a basal fertilization in plastic film house. Livestock manure compost, which made from cattle manure, swine manure, and poultry manure as raw materials, were applied to this experiment, treated by mixing or single on the basis of nitrogen content with the standard amount of fertilizer for strawberries. Total emission of N2O were 10.7% higher than those in poultry manure compost treatment compared to the inorganic fertilizer treatment, but 16.5~41.9% lower than those in other livestock manure compost treatment. The period of N2O emission mainly was up to the 17th day after fertilizer application, accounting for 70~87% of the total amount of discharge, and 13~30% of the total amount was emitted for 158 days later. N2O emission was decreased significantly NH4+-N content in the soil, and increased NO3--N. As compared with control, the number of leaves, leaf width and crown diameter of livestock manure compost treatments were not significantly different, leaf length of cattle+poultry, cattle+ swine, swine+poultry treatment higher, and SPAD (soil plant analysis development) values of cattle+poultry treatment highest. There was no significant difference in weight and sugar content of strawberry fruits among treatments.