Communications for Statistical Applications and Methods
/
v.17
no.4
/
pp.515-525
/
2010
We investigated design-based properties of the ordinary least square estimator(OLSE) and the weighted least square estimator(WLSE) in a panel regression model. Given a complex data we derive the magnitude of the design-based bias of two estimators and show that the bias of WLSE is smaller than that of OLSE. We also conducted a simulation study using Korean welfare panel data in order to compare design-based properties of two estimators numerically. In the study we found the followings. First, the relative bias of OLSE is nearly two times larger than that of WLSE and the bias ratio of OLSE is greater than that of WLSE. Also the relative bias of OLSE remains steady but that of WLSE becomes smaller as the sample size increases. Next, both the variance and mean square error(MSE) of two estimators decrease when the sample size increases. Also there is a tendency that the proportion of squared bias in MSE of OLSE increases as the sample size increase, but that of WLSE decreases. Finally, the variance of OLSE is smaller than that of WLSE in almost all cases and the MSE of OLSE is smaller in many cases. However, the number of cases of larger MSE of OLSE increases when the sample size increases.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.2
/
pp.625-633
/
2013
Multiple response surface optimization (MRSO) aims at finding a setting of input variables which simultaneously optimizes multiple responses. The minimization of mean squared error (MSE), which consists of the squared bias and variance terms, is an effective way to consider the location and dispersion effects of the responses in MRSO. This approach basically assumes that both the terms have an equal weight. However, they need to be weighted differently depending on a problem situation, for example, in case that they are not of the same importance. This paper proposes to use the weighted MSE (WMSE) criterion instead of the MSE criterion in MRSO to consider an unequal weight situation.
In the third phase of the response surface methods, the first-order model is assumed and the curvature of the response surface is checked with a fractional factorial design augmented by centre runs. We further assume that a true model is a quadratic polynomial. To choose an optimal design, Box and Draper(1959) suggested the use of an average mean squared error (AMSE), an average of MSE of y(x) over the region of interest R. The AMSE can be partitioned into the average prediction variance (APV) and average squared bias (ASB). Since AMSE is a function of design moments, region moments and a standardized vector of parameters, it is not possible to select the design that minimizes AMSE. As a practical alternative, Box and Draper(1959) proposed minimum bias design which minimize ASB and showed that factorial design points are shrunk toward the origin for a minimum bias design. In this paper we propose a robust AMSE design which maximizes the minimum efficiency of the design with respect to a standardized vector of parameters.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.1
/
pp.97-105
/
2015
Multiresponse optimization (MRO) seeks to find the setting of input variables, which optimizes the multiple responses simultaneously. The approach of weighted mean squared error (WMSE) minimization for MRO imposes a different weight on the squared bias and variance, which are the two components of the mean squared error (MSE). To date, a weighted sum-based method has been proposed for WMSE minimization. On the other hand, this method has a limitation in that it cannot find the most preferred solution located in a nonconvex region in objective function space. This paper proposes a Tchebycheff metric-based method to overcome the limitations of the weighted sum-based method.
In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.
Weights can be made and imposed in both sample design stage and analysis stage in a sample survey. While in design stage weights are related with sample data acquisition quantities such as sample selection probability and response rate, in analysis stage weights are connected with external quantities, for instance population quantities and some auxiliary information. The final weight is the product of all weights in both stage. In the present paper, we focus on the weight in analysis stage and investigate the effect of such weights imposed on the weighted mean when estimating the population mean. We consider a finite population with a pair of fixed survey value and weight in each unit, and suppose equal selection probability designs. Under the condition we derive the formulas of the bias as well as mean square error of the weighted mean and show that the weighted mean is biased and the direction and amount of the bias can be explained by the correlation between survey variate and weight: if the correlation coefficient is positive, then the weighted mein over-estimates the population mean, on the other hand, if negative, then under-estimates. Also the magnitude of bias is getting larger when the correlation coefficient is getting greater. In addition to theoretical derivation about the weighted mean, we conduct a simulation study to show quantities of the bias and mean square errors numerically. In the simulation, nine weights having correlation coefficient with survey variate from -0.2 to 0.6 are generated and four sample sizes from 100 to 400 are considered and then biases and mean square errors are calculated in each case. As a result, in the case or 400 sample size and 0.55 correlation coefficient, the amount or squared bias of the weighted mean occupies up to 82% among mean square error, which says the weighted mean might be biased very seriously in some cases.
Communications for Statistical Applications and Methods
/
v.5
no.3
/
pp.685-694
/
1998
임상실험이나 신뢰성공학 분야에서 임의 중단자료를 이용한 비모수적 신뢰도 추정량으로 Kaplan-Meier 추정량과 Nelson형 추정량이 많이 사용되고 있다. 그러나 Nelson형 추정량은 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 우수한 반면 편의는 신뢰도가 감소함에 따라 양의 방향으로 점증하는 소표본 특성을 갖는다. Nelson형 추정량의 이러한 특성 때문에 신뢰도의 함수로 표현되는 잔여수명 분위수함수 등의 추정시에는 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 떨어짐을 볼 수 있다. 이러한 점을 고려하여 이 두 추정량을 가중평균으로 통합한 새로운 비모수적 신뢰도 추정량을 제안하고 추정량의 특성을 비교 분석하였다.
In this paper, we propose a vocal separation method using weighted ${\beta}$-order minimum mean wquare error estimation (WbE) based on kernel back-fitting algorithm. In spoken speech enhancement, it is well-known that the WbE outperforms the existing Bayesian estimators such as the minimum mean square error (MMSE) of the short-time spectral amplitude (STSA) and the MMSE of the logarithm of the STSA (LSA), in terms of both objective and subjective measures. In the proposed method, WbE is applied to a basic iterative kernel back-fitting algorithm for improving the vocal separation performance from monaural music signal. The experimental results show that the proposed method achieves better separation performance than other existing methods.
Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.10
/
pp.7061-7070
/
2015
Multi-Response Surface Optimization aims at finding the optimal setting of input variables considering multiple responses simultaneously. The Weighted Mean Squared Error (WMSE) minimization approach, which imposes a different weight on the two components of mean squared error, squared bias and variance, first obtains WMSE for each response and then minimizes all the WMSEs at once. Most of the methods proposed for the WMSE minimization approach to date are classified into the prior preference articulation approach, which requires that a decision maker (DM) provides his/her preference information a priori. However, it is quite difficult for the DM to provide such information in advance, because he/she cannot experience the relationships or conflicts among the responses. To overcome this limitation, this paper proposes a posterior preference articulation method to the WMSE minimization approach. The proposed method first generates all (or most) of the nondominated solutions without the DM's preference information. Then, the DM selects the best one from the set of nondominated solutions a posteriori. Its advantage is that it provides an opportunity for the DM to understand the tradeoffs in the entire set of nondominated solutions and effectively obtains the most preferred solution suitable for his/her preference structure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.