Journal of the Institute of Convergence Signal Processing
/
v.10
no.1
/
pp.49-59
/
2009
In this paper a watermarking algorithm is proposed to optimize the capacity of the digital watermark insertion in an experimental threshold using the characteristics of human visual system(HVS), adaptive scale factors, and weight functions based on discrete wavelet transform. After the original image is decomposed by a 3-level discrete wavelet transform, the watermarks for capacity optimization are inserted into all subbands except the baseband, by applying the important coefficients from the experimental threshold in the wavelet region. The adaptive scale factors and weight functions based on HVS are considered for the capacity optimization of the digital watermark insertion in order to enhance the robustness and invisibility. The watermarks are consisted of gaussian random sequences and detected by correlation. The experimental results showed that this algorithm can preserve a fine image quality against various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, sharpening, linear and non-linear filtering, etc.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.9
/
pp.1165-1171
/
2018
CNN requires a large amount of computation and memory in the process of extracting the feature of the object. Also, It is trained from the network that the user has configured, and because the structure of the network is fixed, it can not be modified during training and it is also difficult to use it in a mobile device with low computing power. To solve these problems, we apply a pruning method to the pre-trained weight file to reduce computation and memory requirements. This method consists of three steps. First, all the weights of the pre-trained network file are retrieved for each layer. Second, take an absolute value for the weight of each layer and obtain the average. After setting the average to a threshold, remove the weight below the threshold. Finally, the network file applied the pruning method is re-trained. We experimented with LeNet-5 and AlexNet, achieved 31x on LeNet-5 and 12x on AlexNet.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.167-170
/
2007
동일한 집단에 속하는 개체를 다른 집단에 속하는 개체로부터 구별할 수 있는 염기의 특징을 해당 집단의 시그너쳐라고 한다. 학습 데이터는 두 집단에 속하는 염기서열들이고, 염기서열에 대한 시그너쳐는 개체를 다른 집단과 구별할 수 있는 위치의 염기들로 구성된 서열이다. 제안한 방법에서는 각 집단에 대해서 위치별로 염기의 발생빈도를 계산하고, 가장 발생빈도가 높은 염기를 결정한 다음, 다른 집단의 대응 위치에서 해당 염기의 빈도를 계산하여, 빈도차이가 지정한 분류임계값 이상이면, 해당 위치의 염기를 시그너쳐를 구성하는 특징으로 간주한다. 시그너쳐를 대한 임의의 염기서열에 대한 부합정도는 시그너쳐에 속하는 염기의 학습집단에서의 상대빈도값을 가중치로 하여 계산한다. 임의의 염기서열이 특정 집단에 속하는지 판단하기 위해서는 해당 집단의 시그너쳐에 대한 부합정도를 계산하게 되는데, 부합정도가 얼마이상이 되어야 해당 집단에 속하는 것으로 간주할지 기준이 되는 임계값을 엄밀도 임계값이라고 한다. 엄밀도 임계값은 학습 데이터 집합에 대해서 주어진 시그너쳐에 대한 엄밀도 임계값이 민감도와 특이도를 최대로 하는 것을 선택한다. 제안한 방법을 구현한 바이오인포매틱스 도구를 개발하여, 한국형 HIV-1 바이러스 시그너쳐 추출에 적용하여 분류특성이 우수한 시그너쳐를 추출할 수 있음을 확인하였다.
In this paper, we proposed an adaptive steganography of color image using bit-planes and multichannel characteristics. Applying fixing threshold, if we insert information into all bit-planes of RGB channel, each channels showed different image quality. Therefore, we first defined the channel weight and the bit-plane weight to solve the fixing threshold problem of BPCS (bit-plane complexity steganography) method. We then proposed a new adaptive threshold method using the bit-plane weight of channels and the bit-plane complexity of cover image to increase insertion capacity adaptively In the experiment, we inserted information into the color images with the same image quality and same insertion capacity, and we analyzed the Insertion capacity and image quality. As a result, the proposed method increased the insertion capacity and improved the image quality than BPCS method.
RWR (Random Walk with Restart) is frequently used by many graph-based ranking algorithms, but it does not consider a signed graph where edges may have negative weight values. In this paper, we apply the Balance Theory by F. Heider to RWR over a signed graph and propose a novel RWR, Balanced Random Walk (BRW). We apply the proposed technique into the domain of recommendation system, and show by experiments its effectiveness to filter out the items that users may dislike. In order to provide the reasonable performance of BRW in the domain, we modify the existing Top-k algorithm, BCA, and propose a new algorithm, Bicolor-BCA. The proposed algorithm yet requires employing a threshold. In the experiment, we show how threshold values affect both precision and performance of the algorithm.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.9B
/
pp.823-833
/
2003
To satisfy the requirements of the real-time Internet services, queue management and scheduling schemes should be enhanced to accommodate the delay and jitter characteristic of them. Although the existing queue management schemes can address the congestion problems of TCP flows, they have some problems in supporting real-time services. That is, they show performance degradation when burst traffics are continuously going into the system after the queue is occupied at a predefined threshold level. In addition, under the congestion state, they show large jitter, which is not a desirable phenomenon for real-time transmissions. To resolve these problems, we propose a SDRED (State Dependent Random Early Detection) and dynamic scheduling scheme that can improve delay and jitter performances by adjusting RED parameters such as ma $x_{th}$ and $w_{q}$ according to the queue status. The SDRED is designed to adapt to the current traffic situation by adjusting the max,$_{th}$ and $w_{q}$ to four different levels. From the simulation results, we show that the SDRED decreases packet delays in a queue and has more stable jitter characteristics than the existing RED, BLUE, ARED and DSRED schemes.mes.mes.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.4
/
pp.877-885
/
2011
A collaborative filtering(CF) is the most widely used technique in recommender system. However, CF has sparsity and scalability problems. These problems reduce the accuracy of recommendation and extensive studies have been made to solve these problems, In this paper, we proposed a method that uses a weight so as to solve these problems. After creating a user-item matrix, the proposed method analyzes information about users who prefer the item only by using data with a rating over 4 for enhancing the accuracy in the recommendation. The proposed method uses information about the genre of the item as well as analyzed user information as a weight during the calculation of similarity, and it calculates prediction by using only data for which the similarity is over a threshold and uses the data as the rating value of unrated data. It is possible simultaneously to reduce sparsity and to improve accuracy by calculating prediction through an analysis of the characteristics of an item. Also, it is possible to conduct a quick classification based on the analyzed information once a new item and a user are registered. The experiment result indicated that the proposed method has been more enhanced the accuracy, compared to item based, genre based methods.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.23-26
/
2019
사물인터넷(IoT)은 지금의 우리가 살고 일하는 모든 방식을 변화시키고 있다. IoT를 통해 데이터를 생성하고 저장하고 연결된 장치와 상호작용하여 비즈니스는 물론 우리의 일상 생활을 개선하고 있는 것이다. 무수히 많은 센서들이 연결된 세상은 센서들에 의해 그 어느 때보다 거대한 양의 데이터들을 생산하고 있다. JSON, XML 같은 트리 구조의 데이터 타입은 대량 데이터 저장 전송 교환 등에 주요하게 사용되는데 이는 트리 구조가 이형 데이터 간의 유연한 정보 전송과 교환을 가능하게 하기 때문이다. 반면에, 효용성 높은 정보나 감추어져 있는 정보들을 트리 구조의 대량 데이터들로부터 추출하는 것은 일반 데이터 구조에 비해 훨씬 어려우며 더 난해한 문제들을 발생시킨다. 본 논문에서는 트리 구조의 대량 스트리밍 데이터로부터 가중치가 부여된 주요한 부정 패턴들을 추출하기 위한 방법을 공식화한다.
In this paper, we apply multiresolution wavelet transform for the digital image watermarking. For better result, we insert watermark into the images and set a proper weighting factor for each subband based on HVS model. With proposed algorithm, we confirm that the image quality is satisfactory and this method outperforms the previous methods against image compression and cropping.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.125-127
/
2000
협력적 여과는 사용자의 아이템에 대한 단계적 평가에 기초하여 그 평가 패턴이 유사한 사용자를 찾아 그 사용자들이 선호한 아이템을 상대방에게 교차 추천을 해주는 방법이다. 따라서, 유사한 사용자를 찾는 방법이 중요한 문제가 되며, 현재까지 여러 가지 방법들이 제안되어 왔다. 순수한 협력적 여과 방법은 n차원 공간에서 사용자를 모델링하여 가장 유사한 이웃을 찾는다. 이러한 모델링의 문제점은 사용자가 평가한 아이템의 집합은 전체 아이템의 집합에 비해서 극히 작으므로 유사한 사용자를 찾기 위해서는 충분한 수의 아이템에 대해서 평가해야 한다는 것이다. 따라서, 본 논문에서는 유사란 사용자를 찾기 위해서 충분한 수의 평가를 요구하는 명백하게 사용자의 평가를 비교하는 것 대신에 특징 가중치에 초하여 사용자를 비교하는 방법을 사용하고 사용하는 방법의 정확성을 높일 수 있는 임계값을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.