• 제목/요약/키워드: 가중치 알고리즘

검색결과 1,233건 처리시간 0.026초

최대 가중치 독립집합 문제의 최대 가중치 독립정점 쌍 병합 알고리즘 (Merge Algorithm of Maximum weighted Independent Vertex Pair at Maximal Weighted Independent Set Problem)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.171-176
    • /
    • 2020
  • 본 논문은 NP-난제로 널리 알려진 최대 가중치 독립집합(MWIS) 문제에 대해 다항시간으로 풀 수 있는 알고리즘을 제시하였다. MWIS 문제에 대해 지금까지는 특정 그래프 형태에 특화된 다항시간 알고리즘, 또는 분산형, 클러스터 형성 방법들이 제안되기도 하였으나 모든 그래프 형태에 적합한 단일화된 알고리즘이 제안되지 않고 있다. 따라서 본 논문에서는 어떠한 형태의 그래프에도 적합한 유일한 다항시간 알고리즘을 제안한다. 제안된 알고리즘은 최대 가중치를 갖는 정점 vi를 vi와 이웃하지 않은 정점 들 중 최대 가중치를 갖는 vj 정점과 병합하였다. 제안된 알고리즘을 무방향 그래프와 트리에 적용한 결과, 최적 해를 얻었다. 특히, 일부 데이터에 대해서는 기존에 알려진 해를 개선하는 결과도 얻었다.

영상 잡음 제거를 위해 개선된 비지역적 평균 알고리즘 (Improved Nonlocal Means Algorithm for Image Denoising)

  • 박상욱;강문기
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.46-53
    • /
    • 2011
  • 비지역적 평균 기반 영상 잡음 제거 알고리즘은 이론적 배경이 간단한데 반해 영상 잡음 제거 성능은 우수하여 최근 가장 널리 사용되는 잡음제거 알고리즘 중에 하나이다. 그러나 기존의 비지역작 평균 기반 알고리즘도 여전히 평탄 영역에서의 잡음 제거 효과가 미흡하며 잡음 제거 과정에서 경계 및 패턴 영역의 흐려짐과 같은 문제점이 있어 다양한 방식으로 개선된 알고리즘이 개발되고 있다. 본 논문에서는 비지역적 평균값을 구할 때 사용되는 가중치를 가중치 정렬을 통해 재 정의된 임계치로서 갱신하고 그로부터 잡음 제거 효과를 향상시키는 개선된 비지역적 평균 알고리즘을 제안한다. 가중치 정렬을 통해 갱신된 가중치들을 통해 경계 및 패턴 영역에서 보다 고르고 선명하게 가중치를 구할 수 있어 결과적으로 잡음 제거로 인한 흐려짐 없이 잡음 제거가 가능하다. 다양한 잡음 정도를 갖는 실험 영상에 제안된 방법을 테스트하여 기존에 제안된 비지역적 평균 기반 알고리즘들에 비해 시각적, 수치적 성능에서 우수한 결과를 얻을 수 있었다.

Gen-2 RFID 시스템에서 가중치 차별화를 통한 슬롯 카운트 선택 알고리즘의 성능 향상 (Performance Enhancement of Slot-Count Selection Algorithm with Weight Differentiation in Gen-2 RFID Systems)

  • 임인택
    • 한국정보통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.561-566
    • /
    • 2011
  • EPCglocal Class-1 Gen-2 RFID 시스템에서는 응답 슬롯의 상태에 따라 다음 질의 라운드의 슬롯 카운트 크기를 결정하는 슬롯 카운트 선택 알고리즘을 제안하였다. Gen-2 RFID 시스템의 슬롯 카운트 선택 알고리즘에서는 슬롯 카운트의 크기를 일정한 값을 가진 가중치 C만큼 증가 또는 감소시킨다. 슬롯의 상태와 무관하게 가중치 C의 값을 동일하게 적용함으로 인하여 알고리즘이 단순한 장점이 있는 반면, 최적의 슬롯 카운트 크기를 유지하기 어려운 단점이 있다. 따라서 본 논문에서는 태그의 응답 결과에 따라 가중치 C의 값을 서로 다르게 적용한 적응적 슬롯 카운트 선택 알고리즘을 제안하고, 이에 대한 성능을 분석한다. 시뮬레이션을 통한 성능분석의 결과, 제안한 알고리즘은 충돌률이 Wang이 제안한 기법과 Gen-2 기법에 비하여 각각 42% 및 65% 정도 낮으므로 태그 식별 시간이 짧음을 알 수 있었다.

가중치를 이용한 병렬 세선화 알고리즘 (Parallel Thinniing Algorithm using Weighted-Value)

  • 한낙희;이필규
    • 인지과학
    • /
    • 제7권1호
    • /
    • pp.5-35
    • /
    • 1996
  • 본 논문은 문자인식,문자검색,도형인식 등에 있어서 필수 과정인 세선화 알고리즘에 대하여 논하였다.접근방법으로는 외곽선으로부터 특정 조건을 만족시키는 화소들을 동시에 제거해 가는 병렬 세선화 방법을 취했다.제안된 알고리즘은 가중치 개념을 도입하여 기존의 알고리즘보다 정확성 및 수행속도의 향상을 성취하였다.실험은 스캐너로 입력된 숫자, 영문자,도형 등을 기준으로 했으며 특히 다른 알고리즘에서 정확하게 세선화 하지 못하는 데이타들을 사용하였다. 실험결과 모양이나 토폴로지를 잃지 않고 정확히 세선화가 가능했으며 잡음으로부터라도 영향을 받지 않았다.

  • PDF

유전자 알고리즘을 이용한 테트리스 AI 기법의 설계 및 구현 (Design and Implementation of AI methodologies for Tetris Game using Genetic Algorithm)

  • 박종길;이성실;최경암;최준혁;김진일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.805-807
    • /
    • 2017
  • 유전자 알고리즘을 이용하여 스스로 테트리스 게임을 플레이하는 AI 기법을 제안한다. 테트리스에 필요한 요소들을 고려하여 각 요소마다 가중치를 곱한 값을 통해 블록을 이동시킬 자리를 정한다. 해당 알고리즘은 8가지의 고려 요소를 가지며, 각 요소별 최적의 가중치를 구하기 위해 유전자 알고리즘을 적용하였다. 본 연구의 성능을 분석하기 위하여 직접 설계 제작한 테트리스로 게임을 정확하게 진행해 나가는가를 실험하였다. 실험 결과, 제안 기법에 따라 테트리스를 진행하는 것을 확인하였다.

  • PDF

개선된 군집화 단계의 NofM 알고리즘을 이용한 훈련된 신경망으로부터의 규칙추출 (Rule extraction from trained neural network using NofM algorithm with improved clustering step)

  • 이한율;나종회;김문현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.581-584
    • /
    • 2001
  • 신경망이 만들어내는 출력에 대한 정보는 수치적으로 분산되어 신경망에 저장되므로, 인간이 직접 해석하기가 힘들다. 본 논문에서는 LRE(link rule extraction)기법인 NofM 알고리즘의 6단계 중에서 초기 단계인 가중치 군집화 단계를 개선하여 추출되는 규칙들의 전제부에 들어가는 규칙 조건들의 수를 조절함으로써, 추출된 규칙이 입력 특성에 대한 정보를 과잉 일반화하거나, 과잉 구체화하는 것을 피할 수 있음을 실험을 통해 보였다. 일반적으로 NofM 알고리즘에서 가중치들을 군집화한 때는 Join 알고리즘을 사용하는데, 본 논문에서는 Join 알고리즘의 Join condition을 0.05부터 0.25까지 0.05씩 점진적으로 확대하여 클러스터링을 하여줌으로써 신경망의 출력에 중요한 역할을 하는 가중치들을 효과적으로 군집화함을 보였다.

  • PDF

기생체 숙주 이론 기반의 경쟁 공진화 신경망 (Competitive Co-Evolving Neural Network : Host and Parasites)

  • 박정은;박민재;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.142-144
    • /
    • 2003
  • 유전자 알고리즘을 사용하여 신경망의 가중치를 학습하는 방법은 역전파 알고리즘이 가지는 여러 가지 문제점을 해결하기 위해 제안되었으나, 유전자 알고리즘 역시 전역 탐색이 아니기 때문에 실세계의 데이터에 적용하기 어려운 가장 큰 장애 요소인 지역 최소점 문제를 완벽하게 해결할 수는 없다. 이러한 지역 최소점 문제를 완화하기 위해 본 논문에서는 기생체-숙주 공진화 현상을 기반으로 한 유전자 알고리즘을 사용한 경쟁 공진화 신경망 학습 방법을 제시하고 있다. 경쟁 공진화는 서로 다를 개체간의 경쟁적인 진화를 통해 궁극적으로 보다 적합도가 높은 개체가 생성되는 이론을 기반으로 하고 있다. 이러한 경쟁 공진화를 통한 신경망 가중치의 학습이 일반적인 유전자 알고리즘을 사용하여 신경망을 학습시키는 것보다 더욱 우수한 가중치 집단을 탐색할 수 있음을 두 종류의 기계 학습 데이터를 통해 입증하였다.

  • PDF

복합 영상 잡음 환경에서 변형된 퍼지가중치 및 결합가중치를 사용한 디지털 스위칭 필터 알고리즘 (Digital Switching Filter Algorithm using Modified Fuzzy Weights and Combined Weights in Mixed Image Noise Environment)

  • 천봉원;김남호
    • 한국정보통신학회논문지
    • /
    • 제25권5호
    • /
    • pp.645-651
    • /
    • 2021
  • 현대 사회는 4차 산업혁명의 영향에 의해 다양한 디지털 통신 장비가 사용되고 있다. 이에 따라 데이터 전송 과정에서 발생하는 잡음제거에 관심이 높아지고 있으며, 효율적으로 영상을 복원하기 위한 연구가 진행되고 있다. 하지만 복합적인 잡음에 훼손된 영상을 복원하는데 어려움을 겪고 있으며, 잡음의 특징에 따라 효과적으로 영상을 복원하는 디지털 필터가 요구되고 있다. 본 논문에서는 디지털 영상 전송 과정에서 발생하는 복합잡음을 제거하기 위한 디지털 스위칭 필터 알고리즘을 제안한다. 제안한 알고리즘은 잡음판단을 통해 필터링 과정을 스위칭하며 마스크 내부의 화소값들을 기준으로 퍼지가중치 및 결합가중치를 사용하여 영상을 복원한다. 제안한 알고리즘을 평가하기 위해 기존 필터 알고리즘들과 시뮬레이션을 통하여 비교하였다. 시각적인 평가를 위해 필터링 결과를 확대하여 비교하였으며, 정량적인 평가를 위해 PSNR 비교를 사용하여 분석하였다.

고밀도 임펄스 잡음에 훼손된 영상 복원을 위한 적응형 가중치 필터 알고리즘 (Adaptive Weight Filter Algorithm for Restoration Images Corrupted by High Density Impulse Noise)

  • 천봉원;김남호
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1483-1489
    • /
    • 2022
  • 최근 4차 산업혁명의 영향과 통신매체의 발전으로 다양한 디지털 영상장비가 산업현장에서 사용되고 있다. 영상 데이터는 카메라와 센서로부터 취득되는 과정 및 송수신 과정에서 잡음에 훼손되기 쉬우며, 훼손된 영상은 시스템의 처리과정에 영향을 미치기 때문에 잡음제거가 필수적으로 선행되고 있다. 본 논문에서는 고밀도의 임펄스 잡음에 훼손된 영상을 복원하기 위해 가중치 그래프를 사용한 가중치 필터 알고리즘을 제안하였다. 제안한 알고리즘은 영상의 필터링 마스크 내부의 화소값을 사용하여 가중치 그래프를 구하였으며, 최종 가중치를 필터링 마스크에 적용하여 영상을 복원하였다. 제안하는 알고리즘의 잡음제거 성능을 분석하기 위해 시뮬레이션을 진행하였으며, 확대영상 및 PSNR을 사용하여 기존 방법과 비교하였다. 제안한 알고리즘의 결과 영상은 고밀도 임펄스 잡음을 제거하며 우수한 성능을 보였다.

효율적인 kNN 알고리즘 (An Efficient kNN Algorithm)

  • 이재문
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.849-854
    • /
    • 2004
  • 본 논문은 문서분류 방법인 kNN의 실행속도를 개선하는 알고리즘을 제안한다. 제안된 알고리즘은 기존의 kNN이 사용하는 <용어, 가중치>쌍의 목록 대신, <문서, 가중치>쌍의 목록을 사용하여 유사성 계산을 빠르게 함으로써 실행속도를 개선하는 것이다. <문서, 가중치>의 목록은 문서분류의 학습단계에서 <용어, 가중치>의 목록을 행렬 전치함으로써 구한다. 본 논문에서는 제안된 알고리즘을 시간복잡도 측면에서 분석하고 기존의 kNN과 비교 하였으며, 로이터-21578 데이터를 사용하여 실험적으로 성능을 비교 하였다. 실험결과, 본 논문에서 제안한 알고리즘이 기존의 kNN보다 실행속도측면에서 약 $90{\%}$정도의 우수함을 알 수 있었다.