본 논문은 NP-난제로 널리 알려진 최대 가중치 독립집합(MWIS) 문제에 대해 다항시간으로 풀 수 있는 알고리즘을 제시하였다. MWIS 문제에 대해 지금까지는 특정 그래프 형태에 특화된 다항시간 알고리즘, 또는 분산형, 클러스터 형성 방법들이 제안되기도 하였으나 모든 그래프 형태에 적합한 단일화된 알고리즘이 제안되지 않고 있다. 따라서 본 논문에서는 어떠한 형태의 그래프에도 적합한 유일한 다항시간 알고리즘을 제안한다. 제안된 알고리즘은 최대 가중치를 갖는 정점 vi를 vi와 이웃하지 않은 정점 들 중 최대 가중치를 갖는 vj 정점과 병합하였다. 제안된 알고리즘을 무방향 그래프와 트리에 적용한 결과, 최적 해를 얻었다. 특히, 일부 데이터에 대해서는 기존에 알려진 해를 개선하는 결과도 얻었다.
비지역적 평균 기반 영상 잡음 제거 알고리즘은 이론적 배경이 간단한데 반해 영상 잡음 제거 성능은 우수하여 최근 가장 널리 사용되는 잡음제거 알고리즘 중에 하나이다. 그러나 기존의 비지역작 평균 기반 알고리즘도 여전히 평탄 영역에서의 잡음 제거 효과가 미흡하며 잡음 제거 과정에서 경계 및 패턴 영역의 흐려짐과 같은 문제점이 있어 다양한 방식으로 개선된 알고리즘이 개발되고 있다. 본 논문에서는 비지역적 평균값을 구할 때 사용되는 가중치를 가중치 정렬을 통해 재 정의된 임계치로서 갱신하고 그로부터 잡음 제거 효과를 향상시키는 개선된 비지역적 평균 알고리즘을 제안한다. 가중치 정렬을 통해 갱신된 가중치들을 통해 경계 및 패턴 영역에서 보다 고르고 선명하게 가중치를 구할 수 있어 결과적으로 잡음 제거로 인한 흐려짐 없이 잡음 제거가 가능하다. 다양한 잡음 정도를 갖는 실험 영상에 제안된 방법을 테스트하여 기존에 제안된 비지역적 평균 기반 알고리즘들에 비해 시각적, 수치적 성능에서 우수한 결과를 얻을 수 있었다.
EPCglocal Class-1 Gen-2 RFID 시스템에서는 응답 슬롯의 상태에 따라 다음 질의 라운드의 슬롯 카운트 크기를 결정하는 슬롯 카운트 선택 알고리즘을 제안하였다. Gen-2 RFID 시스템의 슬롯 카운트 선택 알고리즘에서는 슬롯 카운트의 크기를 일정한 값을 가진 가중치 C만큼 증가 또는 감소시킨다. 슬롯의 상태와 무관하게 가중치 C의 값을 동일하게 적용함으로 인하여 알고리즘이 단순한 장점이 있는 반면, 최적의 슬롯 카운트 크기를 유지하기 어려운 단점이 있다. 따라서 본 논문에서는 태그의 응답 결과에 따라 가중치 C의 값을 서로 다르게 적용한 적응적 슬롯 카운트 선택 알고리즘을 제안하고, 이에 대한 성능을 분석한다. 시뮬레이션을 통한 성능분석의 결과, 제안한 알고리즘은 충돌률이 Wang이 제안한 기법과 Gen-2 기법에 비하여 각각 42% 및 65% 정도 낮으므로 태그 식별 시간이 짧음을 알 수 있었다.
본 논문은 문자인식,문자검색,도형인식 등에 있어서 필수 과정인 세선화 알고리즘에 대하여 논하였다.접근방법으로는 외곽선으로부터 특정 조건을 만족시키는 화소들을 동시에 제거해 가는 병렬 세선화 방법을 취했다.제안된 알고리즘은 가중치 개념을 도입하여 기존의 알고리즘보다 정확성 및 수행속도의 향상을 성취하였다.실험은 스캐너로 입력된 숫자, 영문자,도형 등을 기준으로 했으며 특히 다른 알고리즘에서 정확하게 세선화 하지 못하는 데이타들을 사용하였다. 실험결과 모양이나 토폴로지를 잃지 않고 정확히 세선화가 가능했으며 잡음으로부터라도 영향을 받지 않았다.
유전자 알고리즘을 이용하여 스스로 테트리스 게임을 플레이하는 AI 기법을 제안한다. 테트리스에 필요한 요소들을 고려하여 각 요소마다 가중치를 곱한 값을 통해 블록을 이동시킬 자리를 정한다. 해당 알고리즘은 8가지의 고려 요소를 가지며, 각 요소별 최적의 가중치를 구하기 위해 유전자 알고리즘을 적용하였다. 본 연구의 성능을 분석하기 위하여 직접 설계 제작한 테트리스로 게임을 정확하게 진행해 나가는가를 실험하였다. 실험 결과, 제안 기법에 따라 테트리스를 진행하는 것을 확인하였다.
신경망이 만들어내는 출력에 대한 정보는 수치적으로 분산되어 신경망에 저장되므로, 인간이 직접 해석하기가 힘들다. 본 논문에서는 LRE(link rule extraction)기법인 NofM 알고리즘의 6단계 중에서 초기 단계인 가중치 군집화 단계를 개선하여 추출되는 규칙들의 전제부에 들어가는 규칙 조건들의 수를 조절함으로써, 추출된 규칙이 입력 특성에 대한 정보를 과잉 일반화하거나, 과잉 구체화하는 것을 피할 수 있음을 실험을 통해 보였다. 일반적으로 NofM 알고리즘에서 가중치들을 군집화한 때는 Join 알고리즘을 사용하는데, 본 논문에서는 Join 알고리즘의 Join condition을 0.05부터 0.25까지 0.05씩 점진적으로 확대하여 클러스터링을 하여줌으로써 신경망의 출력에 중요한 역할을 하는 가중치들을 효과적으로 군집화함을 보였다.
유전자 알고리즘을 사용하여 신경망의 가중치를 학습하는 방법은 역전파 알고리즘이 가지는 여러 가지 문제점을 해결하기 위해 제안되었으나, 유전자 알고리즘 역시 전역 탐색이 아니기 때문에 실세계의 데이터에 적용하기 어려운 가장 큰 장애 요소인 지역 최소점 문제를 완벽하게 해결할 수는 없다. 이러한 지역 최소점 문제를 완화하기 위해 본 논문에서는 기생체-숙주 공진화 현상을 기반으로 한 유전자 알고리즘을 사용한 경쟁 공진화 신경망 학습 방법을 제시하고 있다. 경쟁 공진화는 서로 다를 개체간의 경쟁적인 진화를 통해 궁극적으로 보다 적합도가 높은 개체가 생성되는 이론을 기반으로 하고 있다. 이러한 경쟁 공진화를 통한 신경망 가중치의 학습이 일반적인 유전자 알고리즘을 사용하여 신경망을 학습시키는 것보다 더욱 우수한 가중치 집단을 탐색할 수 있음을 두 종류의 기계 학습 데이터를 통해 입증하였다.
현대 사회는 4차 산업혁명의 영향에 의해 다양한 디지털 통신 장비가 사용되고 있다. 이에 따라 데이터 전송 과정에서 발생하는 잡음제거에 관심이 높아지고 있으며, 효율적으로 영상을 복원하기 위한 연구가 진행되고 있다. 하지만 복합적인 잡음에 훼손된 영상을 복원하는데 어려움을 겪고 있으며, 잡음의 특징에 따라 효과적으로 영상을 복원하는 디지털 필터가 요구되고 있다. 본 논문에서는 디지털 영상 전송 과정에서 발생하는 복합잡음을 제거하기 위한 디지털 스위칭 필터 알고리즘을 제안한다. 제안한 알고리즘은 잡음판단을 통해 필터링 과정을 스위칭하며 마스크 내부의 화소값들을 기준으로 퍼지가중치 및 결합가중치를 사용하여 영상을 복원한다. 제안한 알고리즘을 평가하기 위해 기존 필터 알고리즘들과 시뮬레이션을 통하여 비교하였다. 시각적인 평가를 위해 필터링 결과를 확대하여 비교하였으며, 정량적인 평가를 위해 PSNR 비교를 사용하여 분석하였다.
최근 4차 산업혁명의 영향과 통신매체의 발전으로 다양한 디지털 영상장비가 산업현장에서 사용되고 있다. 영상 데이터는 카메라와 센서로부터 취득되는 과정 및 송수신 과정에서 잡음에 훼손되기 쉬우며, 훼손된 영상은 시스템의 처리과정에 영향을 미치기 때문에 잡음제거가 필수적으로 선행되고 있다. 본 논문에서는 고밀도의 임펄스 잡음에 훼손된 영상을 복원하기 위해 가중치 그래프를 사용한 가중치 필터 알고리즘을 제안하였다. 제안한 알고리즘은 영상의 필터링 마스크 내부의 화소값을 사용하여 가중치 그래프를 구하였으며, 최종 가중치를 필터링 마스크에 적용하여 영상을 복원하였다. 제안하는 알고리즘의 잡음제거 성능을 분석하기 위해 시뮬레이션을 진행하였으며, 확대영상 및 PSNR을 사용하여 기존 방법과 비교하였다. 제안한 알고리즘의 결과 영상은 고밀도 임펄스 잡음을 제거하며 우수한 성능을 보였다.
본 논문은 문서분류 방법인 kNN의 실행속도를 개선하는 알고리즘을 제안한다. 제안된 알고리즘은 기존의 kNN이 사용하는 <용어, 가중치>쌍의 목록 대신, <문서, 가중치>쌍의 목록을 사용하여 유사성 계산을 빠르게 함으로써 실행속도를 개선하는 것이다. <문서, 가중치>의 목록은 문서분류의 학습단계에서 <용어, 가중치>의 목록을 행렬 전치함으로써 구한다. 본 논문에서는 제안된 알고리즘을 시간복잡도 측면에서 분석하고 기존의 kNN과 비교 하였으며, 로이터-21578 데이터를 사용하여 실험적으로 성능을 비교 하였다. 실험결과, 본 논문에서 제안한 알고리즘이 기존의 kNN보다 실행속도측면에서 약 $90{\%}$정도의 우수함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.