• Title/Summary/Keyword: 가중치부여 기법

Search Result 264, Processing Time 0.02 seconds

A Dynamic feature Weighting Method for Case-based Reasoning (사례기반 추론을 위한 동적 속성 가중치 부여 방법)

  • 이재식;전용준
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.47-61
    • /
    • 2001
  • Lazy loaming methods including CBR have relative advantages in comparison with eager loaming methods such as artificial neural networks and decision trees. However, they are very sensitive to irrelevant features. In other words, when there are irrelevant features, larry learning methods have difficulty in comparing cases. Therefore, their performance can be degraded significantly. To overcome this disadvantage, feature weighting methods for lazy loaming methods have been studied. Most of the existing researches, however, were focused on global feature weighting. In this research, we propose a new local feature weighting method, which we shall call CBDFW. CBDFW stores classification performance of randomly generated feature weight vectors. Then, given a new query case, CBDFW retrieves the successful feature weight vectors and designs a feature weight vector fur the query case. In the test on credit evaluation domain, CBDFW showed better classification accuracy when compared to the results of previous researches.

  • PDF

A Study on the Performance Improvement of Rocchio Classifier with Term Weighting Methods (용어 가중치부여 기법을 이용한 로치오 분류기의 성능 향상에 관한 연구)

  • Kim, Pan-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.1
    • /
    • pp.211-233
    • /
    • 2008
  • This study examines various weighting methods for improving the performance of automatic classification based on Rocchio algorithm on two collections(LISA, Reuters-21578). First, three factors for weighting are identified as document factor, document factor, category factor for each weighting schemes, the performance of each was investigated. Second, the performance of combined weighting methods between the single schemes were examined. As a result, for the single schemes based on each factor, category-factor-based schemes showed the best performance, document set-factor-based schemes the second, and document-factor-based schemes the worst. For the combined weighting schemes, the schemes(idf*cat) which combine document set factor with category factor show better performance than the combined schemes(tf*cat or ltf*cat) which combine document factor with category factor as well as the common schemes (tfidf or ltfidf) that combining document factor with document set factor. However, according to the results of comparing the single weighting schemes with combined weighting schemes in the view of the collections, while category-factor-based schemes(cat only) perform best on LISA, the combined schemes(idf*cat) which combine document set factor with category factor showed best performance on the Reuters-21578. Therefore for the practical application of the weighting methods, it needs careful consideration of the categories in a collection for automatic classification.

Object Categorization Using PLSA Based on Weighting Distinctions (특이점 가중치 기반 PLSA를 이용한 객체 범주화)

  • Song, Hyun-Chul;Choi, Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.460-465
    • /
    • 2007
  • 영상 내 사물들의 카테고리를 인식하는 연구는 시각적 영상처리와 연관된 다양한 분야에서 활발히 진행되고 있다. 객체 범주화(Object Categorization)는 가정과 같은 실내에서 책상, 의자, 컵, 주전자 등의 다양한 사물들을 구분하여 인식하는데 중요한 역할을 할 수 있다. 본 논문에서는 최근 영상 내 객체들의 카테고리 분석을 위해 연구된 PLSA를 기반으로 특이점에 가중치를 부여하여, 보다 유사한 카테고리 간에 인식 성능을 향상시키는 접근법에 대하여 연구하였다. PLSA는 문서기반의 정보검색 분야로부터 소개된 기법으로, 약한 수준의 비감독 방법임에도 불구하고 인상적인 인식성능을 보여준다. 그러나 비슷한 특징점 분포를 보이는 유사한 카테고리 간의 객체 카테고리 인식에 대해서는 비교적 낮은 성능을 보인다. 본 연구에서는 카테고리간의 비교실험을 통해 각 특징점에 대하여 가중치를 부여한 PLSA를 적용하여 유사한 객체 간의 카테고리 인식 가능성을 살펴보았다. 실험에서는 기존의 PLSA 기법과 제안한 가중치를 부여 PLSA 기법을 각각 적용하여 그 성능을 비교하였다. 본 연구에서는 기존 PLSA 기법에서는 비교적 낮은 인식률을 보인 유사한 카테고리 인식에 대하여 실험 결과를 통해 가중치를 부여한 PLSA 기법이 보다 향상된 성능을 보임을 확인하였다.

  • PDF

Object Categorization Using PLSA Based on Weighting (특이점 가중치 기반 PLSA를 이용한 객체 범주화)

  • Song, Hyun-Chul;Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 2009
  • In this paper we propose a new approach that recognizes the similar categories by weighting distinctive features. The approach is based on the PLSA that is one of the effective methods for the object categorization. PLSA is introduced from the information retrieval of text domain. PLSA, unsupervised method, shows impressive performance of category recognition. However, it shows relatively low performance for the similar categories which have the analog distribution of the features. In this paper, we consider the effective object categorization for the similar categories by weighting the mainly distinctive features. We present that the proposed algorithm, weighted PLSA, recognizes similar categories. Our method shows better results than the standard PLSA.

  • PDF

A Case-Specific Feature Weighting Method in Case-Based Reasoning (사례기반 추론에서 사례별 속성 가중치 부여 방법)

  • 이재식;전용준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

Term Weighting Method by Postposition and Compound Noun Recognition (조사 유형 및 복합명사 인식에 의한 용어 가중치 부여 기법)

  • 강승식;이하규;손소현;홍기채;문병주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.196-198
    • /
    • 2001
  • 문서의 내용을 대표하는 용어를 추출하기 위해 일반적으로 영어에서는 명사구를 색인하는 기법을 사용하지만 주제어 추출의 관점에서 영어의 명사구가 한국어의 복합명사에 해당하기 때문에 한국어에서는 복합명사 색인 기법을 중요시하고 있다. 본 논문에서는 한글 문서에서 추출된 용어의 가중치를 결정하기 위하여 경험적인 방법에 따라 가중치를 계산하는 방법을 제안한다. 구체적인 가중치 계산 방법으로 용어 자체의 특성에 의한 가중치를 부여한 후에, 복합명사의 경계를 인식하여 띄어쓴 복합명사의 가중치를 조절하고, 다시 용어의 조사 유형에 따라 가중치를 재계산하는 방법을 제안한다. 신문기사에 대한 실험결과에 의하면 제안한 방법이 단순 출현빈도에 의한 주제어 추출 기법보다 정확도가 더 높았다.

  • PDF

A Gap-based Weighting Approach in Mining Sequential Patterns (순차패턴 마이닝에서 발생 간격 기반 가중치 부여 기법)

  • Chang, Joong-Hyuk;Shin, Mu-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.300-303
    • /
    • 2010
  • 순차패턴 마이닝에서 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서뿐만 아니라 구성요소의 가중치를 추가로 고려할 수 있다. 본 논문에서는 순차패턴 마이닝에서 가중치 순차패턴을 탐색하기 위한 가중치 계산 기법으로 발생 간격에 기반한 순차패턴 가중치 부여 기법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생 순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻도록 지원한다.

Depth Map Up-sampling Using Maximum Gradient of Color Image (색상 영상의 최대 변화도를 이용한 깊이맵 업샘플링 기법)

  • Jung, Jae-Il;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.29-30
    • /
    • 2012
  • 본 논문은 고해상도의 깊이맵을 얻기 위해서 대응되는 색상 영상의 최대 변화도를 이용한 깊이맵 업샘플링 기술을 제안한다. 기존 알고리즘들이 인접한 화소의 깊이 값을 참조할 때 거리에 따른 가중치를 부여하는 것과 달리, 제안한 방법은 현재 화소와 참조 화소 사이의 최대 색차 변화도를 이용하여 가중치를 부여한다. 이런 접근 방법은 비슷한 색상의 물체가 서로 붙어 있거나 큰 크기의 객체가 존재할 경우에도 모두 올바른 가중치를 부여할 수 있다는 장점을 갖는다. 먼저, 색상 영상의 색차 성분에 대한 변화도 영상을 계산하고, 업샘플링하고자 하는 화소와 참조 화소 사이의 최단 경로 위에서 가장 큰 변화도를 취한다. 변화도가 클수록 다른 객체에 존재할 확률이 높기 때문에 변화도가 큰 참조 화소에는 작은 가중치를 부여하고, 이들의 가중합을 통해 최종 깊이 값을 계산한다. 제안한 방법을 이용하여 깊이맵을 업샘플링한 결과가 기존 알고리즘들에 비해 우수한 결과를 보였다.

  • PDF

Term Weighting Method for Natural Language Query Sentence (자연언어 질의 문장의 용어 가중치 부여 기법)

  • Kang, Seung-Shik;Lee, Ha-Gyu;Son, So-Hyun;Moon, Byung-Joo;Hong, Gi-Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.223-227
    • /
    • 2002
  • 자연언어 질의 문장으로부터 검색어로 사용될 질의어의 추출 및 질의어 가중치를 계산하기 위하여 질의 문장들의 유형을 분석하였으며, 질의어 구문의 특성에 따라 용어들의 가중치를 계산하는 방법을 제안하였다. 용어의 가중치를 부여할 때 띄어쓴 복합명사와 접속 관계 등에 의해 연결된 명사구는 질의어 가중치를 동등하게 적용할 필요가 있다. 질의 문장에서 가중치가 동등하게 적용되는 명사구를 인식하기 위한 목적으로 구현된 명사구 chunking을 수행한 후에 각 용어들에 대한 질의어 가중치를 계산한다. 질의어 가중치를 계산하기 위하여 용어의 유형, 질의 구문의 특성, 문서 유형을 지칭하는 용어, 조사 유형, 용어의 길이 등에 따라 가중치를 조절하는 방법을 사용한다. 용어유형에 의한 가중치 계산은 추출된 용어의 품사 정보와 전문 용어 사전, 부사성 명사 사전을 이용하였다.

  • PDF

Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm (Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류)

  • 고수정;이정현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2001
  • The previous Bayesian document categorization method has problems that it requires a lot of time and effort in word clustering and it hardly reflects the semantic information between words. In this paper, we propose a weighted Bayesian document categorizing method based on association word knowledge base acquired by mining technique. The proposed method constructs weighted association word knowledge base using documents in training set. Then, classifier using Bayesian probability categorizes documents based on the constructed association word knowledge base. In order to evaluate performance of the proposed method, we compare our experimental results with those of weighted Bayesian document categorizing method using vocabulary dictionary by mutual information, weighted Bayesian document categorizing method, and simple Bayesian document categorizing method. The experimental result shows that weighted Bayesian categorizing method using association word knowledge base has improved performance 0.87% and 2.77% and 5.09% over weighted Bayesian categorizing method using vocabulary dictionary by mutual information and weighted Bayesian method and simple Bayesian method, respectively.

  • PDF