• Title/Summary/Keyword: 가중치부여방법

Search Result 465, Processing Time 0.027 seconds

연구개발과제의 양적.질적 성과분석지수 개발 : IT핵심기술개발사업을 중심으로

  • Yu, Seung-Hun;Lee, Jong-Sik;Kim, Sang-Tae
    • Proceedings of the Technology Innovation Conference
    • /
    • 2009.02a
    • /
    • pp.413-433
    • /
    • 2009
  • 질적인 측면을 충분히 감안하지 못한 양적 성과분석은 연구개발 과제의 성과를 제대로 반영하지 못하는 문제점을 안고 있다. 따라서 양적 성과와 질적 성과를 함께 종합적으로 고려할 수 있는 종합적인 성과분석지수를 개발할 필요가 있다. 본 연구에서는 주성분 분석과 동일 가중치를 부여하는 방식을 이용하여, 특허 출원 건수, SCI 게재논문 건수, 기술이전 건수라는 3가지 양적 성과지표와 이에 대응되는 특허 심사청구 항수, 논문게재 학술지의 IT, 총 연구비 대비기술료 비중의 3가지 질적 성과지표를 성과지표로 고려하면서 성과분석지수를 개발하고자 하였다. 주성분 분석의 적용 결과 특허 출원 건수(0.2160), SCI 논문게재 건수(0.1510), 기술이전 건수(0.1564), 특허 심사청구 항수(0.2257), 논문게재 학술지의 IF(0.2218), 기술료 비중(0.0291)의 가중치를 얻을 수 있었다. 이 6가지 평가지표는 종합평가지수라는 하나의 틀로 결합되어 개별 과제의 성과를 평가하는 데 활용될 수 있다. 더 나아가 양적 성과지표와 질적 성과지표로 구분하여 평가할 수 있다. 가중치 결정 방법에 따라 평가결과가 크게 달라지지는 않았지만, 가중치 결정 방법과 상관없이 양적 성과지표 평가결과와 질적 성과지표 평가결과는 크게 달랐다. 한 가지 흥미로운 점은 과제평가등급과의 상관관계를 따져보았더니 질적 성과지표와 과제등급과의 상관관계가 양적 성과지표와 과제등급과의 상관관계보다 더 크다는 것이다. 따라서 성과분석에 있어서 질적 성과지표를 반영한 질적 성과분석이 반드시 수행될 필요가 있다. 앞으로 특허 인용도 등 보다 다양한 질적 변수를 확보하여 성과분석지수를 보완할 필요가 있을 것이다.

  • PDF

Weight Assignments on Keyfacts for Enhancing Precision in Information Retrieval (정보검색에서 정확률의 향상을 위한 키팩트의 가중치 부여)

  • Kim, Su-Hui;Nam, Hyo-Don
    • Journal of KIISE:Databases
    • /
    • v.27 no.4
    • /
    • pp.627-636
    • /
    • 2000
  • 정보검색에서 궁극적으로 지향하는 바는 질의에 대한 정확률과 재현률을 동시에 높이는 것이다. 이 논문에서는 [중심어, 종속어]로 이루어지는 키팩트를 그 유형에 따라 9가지 형태로 분류하였으며. 이 유형들의 주요도를 반영하여 키팩트의 가중치를 계산하는 방법을 개발하였다. 키팩트 유형들에 주요도 값들을 할당한 방법을 검증하기 위한 실험은 질의문들을 이용하여 평균 재현률을 계산함으로써 수행되었다. 9개의 키팩트 타입에 9가지의 주요도 값을 할당하는 방법을 실험하였고 그 결과를 분석하였다. 이 논문의 결과는 기존의 키워드 기반 정보검색에서 문제시되고 있는 정확률을 키팩트 기반 정보 검색에서 향상할 수 있는 가능성을 시사하고 있다.

  • PDF

Comparison with various approach algorithms for Fast Stereo Matching in Real-time system (실시간 시스템에서의 빠른 스테레오 매칭을 위한 다양한 접근 알고리즘의 성능비교)

  • Kim, Ho-Young;Lee, Seong-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.303-304
    • /
    • 2011
  • 영역기반 스테레오 매칭의 분야에서 최근 인간의 시각체계(Human Visual System)에 기반하여 영역내의 밝기값과 거리값에 따라 적응적으로 가중치를 부여하는 적응적 영역 가중치(Adaptive Support-Weight) 방법이 좋은 매칭 결과를 보이고 있다. 하지만 이 방법은 영역 윈도우의 크기가 커짐에 따라 기하급수적으로 계산량이 많아지는 단점을 보이고 있다. 이에 Bilateral filter 수식으로 근사화 후 Integral Histogram 기법을 적용하여 영역 윈도우의 크기에 상관없이 상수 시간 O(1) 내에 매칭을 수행하는 연구가 진행되었다. 하지만 이 방법은 근사화 과정에서의 원 ASW 수식을 왜곡하기 때문에 매칭 정확도의 손실을 가져오게 된다. 이에 본 논문에서는 Bilateral 접근 방식, Sub-Block 방식 및 적응적 시차 탐색 방식에 대하여 각 방식에서 필요한 메모리 자원과 소모되는 계산량의 비용과 동시에 매칭 결과 정확도 면에서 비교하고 가장 좋은 접근 방식을 도출하고자 한다.

  • PDF

Performance Analysis of Adaptive FOD Algorithm Using Neighbor Intelligible Components (인접 가해 성분을 이용한 적응적 선형 축소 알고리즘의 성능 분석)

  • Kwak, No-Yoon
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.591-594
    • /
    • 2003
  • 본 논문은 중심 화소의 FOD 성분값과 인접 가해 성분값의 평균으로 축소 성분값을 산출함으로써 FOD에 적응성을 부여한 디지털 영상 축소 알고리즘의 성능을 분석함에 그 목적이 있다. 제안된 방법은, 중심 화소의 우측 및 하측 인접 화소의 기울기의 크기를 이용하여 산출한 각각의 국부 가해 가중치를 우측 및 하측 인접 화소값에 곱한 후에 그 결과를 합산함으로써 인접 가해 성분값을 구하고 FOD 성분값과 이 인접 가해 성분값을 평균하여 축소 성분값을 구하는 과정을 전체 영역에 반복적으로 수행함으로써 축소 영상을 얻을 수 있다. 제안된 축소 방법에 따르면, 적은 연산량을 요하면서도 평균적으로 우수한 결과를 제공하는 FOD 방식의 장점을 취하면서 인접 화소의 유효 가해 성분을 각각의 국부 가해 가중치에 따라 축소 성분값에 적응적으로 반영함으로써 FOD의 단점인 몽롱화 현상을 효과적으로 억제시킬 수 있는 바, 개선된 정보 보존성을 제공할 수 있는 이점이 있다. 본고에서는 주관적인 성능과 하드웨어 복잡도 측면에서 제안된 방법과 기존의 각 방식에 대한 성능을 분석 평가한다.

  • PDF

A Method for Improving Recall Precision on Information Retrieval Systems Using Multiple Terms (다중단어를 사용한 정보검색 시스템에서의 재현정확도 향상방법)

  • 최종희;최동시;박세영;오희국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.150-152
    • /
    • 1998
  • 정확한 정보를 검색하기 위해 단일단어를 사용하는 대신에 다중단어를 사용하는 정보검색 시스템에 대한 연구가 활발히 진행되고 있다. 그러나 아직까지 다중단어를 이용한 검색시스템은 그리 많지 않다. 다중단어를 이용한 정보검색시스템의 한 예가 키팩트를 이용한 정보검색 시스템이다. 키팩트란 키워드뿐만 아니라 관련정보를 같이 포함하고 있는 다중단어의 하나다. 키팩트에 기반한 정보검색 시스템은 현재 문서의 색인과정과 질의어의 키팩트 추출과정에서 같은 가중치를 가진 키팩트를 생성한다. 그러나, 하나의 명사구는 그것이 갖는 의미에 따라 각기 다른 다양한 키팩트를 생성하기 때문에, 이들의 결과에 기존의 정보검색 방법을 적용하는 것은 문제가 많다. 따라서 본 논문에서는 색인시에 생성되는 각각의 키팩트에 적절한 가중치를 부여함으로써 보다 정확한 정보검색이 이루어지도록 하는 방법을 제안한다.

  • PDF

K-means Clustering Method according to Documentation Numbers (문서 수에 따른 가중치를 적용한 K-means 문서 클러스터링)

  • Cho, Cea-Sung;An, Dong-Un;Jeong, Sung-Jong;Lee, Shin-Won
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.345-348
    • /
    • 2003
  • 본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)를 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.

  • PDF

Zernike Moments Shape Descriptor with Region Partitioning (영역분할에 의한 Zernike Moments 모양정보 기술자)

  • 김종득;김해광
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.53-57
    • /
    • 1999
  • 모양정보는 사람이 물체를 구분하는 특징 중 하나이며 Zernike moments등의 방법으로 그 특징을 표현한다. 본 논문에서는 기존의 Zernike moment 방법을 수정하여 입력 모양정보를 내부 모양정보와 외부 모양정보로 분리하여 각각의 영역에 대해서 특징을 추출한다. 그리고 두 모양정보의 유사도를 계산하는 과정에서 내부 모양정보와 외부 모양정보의 특징에 각각 다른 가중치를 적용함으로써 사용자의 의도에 가장 적합한 질의 결과를 얻을 수 있는 새로운 기능성을 부여하여 검색의 효율성을 높였다. 실험 결과 기존의 Zernike moments 방법에 비해서 최대 12 %의 성능 향상이 있음을 보였다.

  • PDF

A Comparative Study on Category Assignment Methods of a KNN Classifier (KNN 분류기의 범주할당 방법 비교 실험)

  • 이영숙;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.37-40
    • /
    • 2000
  • KNN(K-Neatest Neighbors)을 사용한 문서의 자동분류에서는 새로운 입력문서에 범주를 할당하기 위해 K개의 유사문서로부터 범주별 문서의 분류빈도나 유사도를 이용한다. 본 연구에서는 KNN 기법에서 보편적으로 사용되는 범주 할당 방법을 응용하여 K개 유사문서 중 최상위 및 상위 M개 문서에 가중치를 부여하는 방법들을 고안하였고 K값의 변화에 따른 이들의 성능을 비교해 보았다.

  • PDF

A Research on Enhancement of Text Categorization Performance by using Okapi BM25 Word Weight Method (Okapi BM25 단어 가중치법 적용을 통한 문서 범주화의 성능 향상)

  • Lee, Yong-Hun;Lee, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5089-5096
    • /
    • 2010
  • Text categorization is one of important features in information searching system which classifies documents according to some criteria. The general method of categorization performs the classification of the target documents by eliciting important index words and providing the weight on them. Therefore, the effectiveness of algorithm is so important since performance and correctness of text categorization totally depends on such algorithm. In this paper, an enhanced method for text categorization by improving word weighting technique is introduced. A method called Okapi BM25 has been proved its effectiveness from some information retrieval engines. We applied Okapi BM25 and showed its good performance in the categorization. Various other words weights methods are compared: TF-IDF, TF-ICF and TF-ISF. The target documents used for this experiment is Reuter-21578, and SVM and KNN algorithms are used. Finally, modified Okapi BM25 shows the most excellent performance.

The Pupil Motion Tracking Based on Active Shape Model Using Feature Weight Vector (특징 가중치 벡터를 적용한 능동 형태 모델 기반의 눈동자 움직임 추적)

  • Kim, Soon-Beak;Lee, Soo-Heum
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • 본 논문은 특징 가중치 벡터를 적용하여 능동형태 모델(Active Shape Model)기반에서 눈동자의 움직임 추적 속도를 향상시키는 방법을 제안한다. 일반적인 능동형태 모델에서는 객체 추적을 위한 PDM 구성을 위해 각 특징점 구성 벡터의 유클리디안 거리의 최소 값으로 Training Set정렬 과정을 수행한다. 이 과정에서 적절하지 못한 샘플 영상으로 인해 안정된 PDM을 구성하지 못하는 문제점이 발생한다. 이러한 문제점을 해결하기 위하여 본 논문에 서는 형태를 구성하는 특징점마다 가중치를 부여하는 벡터를 작성하고, 최소자승근사법으로 최유사 특징점 벡터를 산출하기 위한 선형방정식을 구상하였다. 이로 인해 안정된 PDM을 구성할 수 있었으며, 눈동자 추적실험을 통해 형태적 움직임을 보정하는 실험을 수행하였다. 실험결과 기존의 능동형태 모델에 비해 반복연산의 횟수가 줄어들고, 다양한 형태로 나타나는 눈동자의 움직임 추적에 보다 안정적인 결과를 얻을 수 있었다.

  • PDF