• Title/Summary/Keyword: 가중선형회귀분석

Search Result 23, Processing Time 0.02 seconds

Settlement Prediction Accuracy Analysis of Weighted Nonlinear Regression Hyperbolic Method According to the Weighting Method (가중치 부여 방법에 따른 가중 비선형 회귀 쌍곡선법의 침하 예측 정확도 분석)

  • Kwak, Tae-Young ;Woo, Sang-Inn;Hong, Seongho ;Lee, Ju-Hyung;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.45-54
    • /
    • 2023
  • The settlement prediction during the design phase is primarily conducted using theoretical methods. However, measurement-based settlement prediction methods that predict future settlements based on measured settlement data over time are primarily used during construction due to accuracy issues. Among these methods, the hyperbolic method is commonly used. However, the existing hyperbolic method has accuracy issues and statistical limitations. Therefore, a weighted nonlinear regression hyperbolic method has been proposed. In this study, two weighting methods were applied to the weighted nonlinear regression hyperbolic method to compare and analyze the accuracy of settlement prediction. Measured settlement plate data from two sites located in Busan New Port were used. The settlement of the remaining sections was predicted by setting the regression analysis section to 30%, 50%, and 70% of the total data. Thus, regardless of the weight assignment method, the settlement prediction based on the hyperbolic method demonstrated a remarkable increase in accuracy as the regression analysis section increased. The weighted nonlinear regression hyperbolic method predicted settlement more accurately than the existing linear regression hyperbolic method. In particular, despite a smaller regression analysis section, the weighted nonlinear regression hyperbolic method showed higher settlement prediction performance than the existing linear regression hyperbolic method. Thus, it was confirmed that the weighted nonlinear regression hyperbolic method could predict settlement much faster and more accurately.

Locally Weighted Polynomial Forecasting Model (지역가중다항식을 이용한 예측모형)

  • Mun, Yeong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.31-38
    • /
    • 2000
  • Relationships between hydrologic variables are often nonlinear. Usually the functional form of such a relationship is not known a priori. A multivariate, nonparametric regression methodology is provided here for approximating the underlying regression function using locally weighted polynomials. Locally weighted polynomials consider the approximation of the target function through a Taylor series expansion of the function in the neighborhood of the point of estimate. The utility of this nonparametric regression approach is demonstrated through an application to nonparametric short term forecasts of the biweekly Great Salt Lake volume.volume.

  • PDF

Trip Generation Model based on Geographically Weighted Regression (공간가중회귀분석을 이용한 통행발생모형)

  • Kim, Jin-Hui;Park, Il-Seop;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.101-109
    • /
    • 2011
  • In most of the urbanized cities, socio-economic attributes tend to cluster as patterns of similarity in space, namely spatial autocorrelation, by agglomeration forces. The classical linear regression model, the most frequently adopted in the trip generation step, cannot sufficiently represent this effect. In order to take into account the effect properly, we need a model which adequately deals with the spatial dependence patterns. In this study, the Geographically Weighted Regression (GWR) model is adopted as an alternative method for the local analysis of relationships in multivariate data sets; that is GWR extends this traditional regression framework by estimating local rather than global parameters. This study shows the existence of spatial effects in the production and attraction of home base/non-home based trips through the GWR model using travel data collected in Daegu metropolitan area. Furthermore, LISA is employed to verify the fact that the local spatial autocorrelation exists.

Estimation of nonlinear GARCH-M model (비선형 평균 일반화 이분산 자기회귀모형의 추정)

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.831-839
    • /
    • 2010
  • Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

Analysis of Eunpyeong New Town Land Price Using Geographically Weighted Regression (지리가중회귀분석을 이용한 은평뉴타운 지가 분석)

  • Jung, Hyo-jin;Lee, Jiyeong
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • Newtown Business of Seoul had been performed to reduce deterioration of Gangbuk and economic inequality between Gangnam and Gangbuk. According to this, Eunpyeong-gu was set as test-bed for Newtown business and Newtown business had been completed until 2013. This study aims to analyze the influence of social and economical factors which affect land price using GWR (Geographically Weighted Regression) considered spatial effect. As a result of analysis, GWR model demonstrated a better goodness-of-fit than OLS (Ordinary least square) model typically used in most study. Furthermore, AIC value and Moran's I of residual prove that GWR model is more suitable than OLS model. GWR model enable to explain more detailed than global regression model as coefficient and sign show different value locally. In future, this research will be helpful to develop Eunpyeong-gu considering spatial characters and strength effectiveness of development.

En-route Trajectory Prediction via Weighted Linear Regression (가중선형회귀를 통한 순항항공기의 궤적예측)

  • Kim, Soyeun;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.44-52
    • /
    • 2016
  • The departure flow management is the planning tool to optimize the schedule of the departure aircraft and allows them to join smoothly into the overhead traffic flow. To that end, the arrival time prediction to the merge point for the cruising aircraft is necessary to determined. This paper proposes a trajectory prediction model for the cruising aircraft based on the machine learning approach. The proposed method includes the trajectory vectored from the procedural route and is applied to the historical data to evaluate the prediction performances.

Nonstationary Frequency Analysis at Seoul Using a Power Model (Power 모형을 이용한 서울지점 비정상성 빈도해석)

  • Lee, Gi-Chun;Kim, Gwang-Seob;Choi, Kyu-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.461-461
    • /
    • 2012
  • 본 연구는 서울 지점의 목표연도(2040, 2070, 2100년)별 재현기간에 따른 확률강수량을 산정하기 위해 지속시간 24시간에 대한 연 최대 강수량 자료를 구축하여 비정상성 빈도해석을 수행하였다. 연 최대강수량 자료를 이용해 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 구축한 후, 누적 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였다. Gumbel 분포를 이용해 비정상성 빈도해석을 실시하였으며, 각 매개변수의 경우 확률가중모멘트법을 이용해 산정하였다. 산정된 누적평균 강수량과 연도와의 선형회귀분석을 실시한 방법뿐만 아니라 서울 지점이 속한 한강유역의 전 지점들을 이용한 유역의 누적평균 강수량 자료에 대하여 연도와의 Logsitic 회귀분석 및 Power Model을 이용해 서울 지점의 목표연도별 누적평균 강수량을 산정하였고 이를 통해 목표연도별 위치매개변수 및 축척매개변수를 구해 목표연도별 재현기간에 따른 확률강수량을 산정하였다. 선형회귀분석을 이용한 비정상성 빈도해석의 경우, 목표연도가 증가함에 따라 선형적인 증가에 의해 매우 높은 누적평균 강수량이 나타나 확률강수량의 경우에도 정상성임을 가정한 확률강수량에 비해 매우 높게 나타나 타당한 확률강수량이라 함에 한계가 있음을 보였다. 유역의 평균거동과 Logistic 회귀분석을 실시하여 확률강수량을 산정하였을 때에는, 선형 회귀분석에 비해 정상성임을 가정한 확률강수량보다 크게 증가하지 않고 비교적 안정적인 증가가 나타났다. 하지만 Logistic 회귀분석을 이용한 누적평균 강수량 산정에 있어서 목표연도 2040년에 도달하기 전에 미리 수렴하는 형태를 보여 모든 목표연도의 확률강수량이 동일한 값을 가지는 한계가 나타났다. 한강 유역의 평균거동과 Power Model을 이용한 비정상성 빈도해석의 경우, 선형회귀분석 및 Logistic 회귀분석을 통한 비정상성 빈도해석에서 나타난 문제점을 보완할 수 있는 확률강수량이 나타남을 보였다.

  • PDF

Analysis of the Limitations of the Existing Subsidence Prediction Method Based on the Subsidence Measurement Data and Suggestions for Improvement Method Through Weighted Nonlinear Regression Analysis (기존 계측 기반 침하 예측 이론식 한계점 도출 및 가중 비선형 회귀분석을 통한 침하 예측 개선방안 제시)

  • Kwak, Tae-Young;Hong, Seongho;Lee, Ju-Hyung;Woo, Sang-Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.103-112
    • /
    • 2022
  • The existing subsidence prediction method based on the measurement data were confirmed in this study through literature research. It was confirmed that the hyperbolic method and the Asaoka method showed high accuracy, while the other prediction methods showed significantly low accuracy. Based on the analysis results, the limitations of the existing prediction equations were derived, and the improvement method of the settlement prediction equations was suggested. In this study, a weighted nonlinear regression analysis method that gives higher weight to the later data was proposed to improve the existing hyperbolic method.

Unified Approach to Coefficient of Determination $R^2$ Using Likelihood Distancd (우도거리에 의한 결정계수 $R^2$에의한 통합적 접근)

  • 허명회;이종한;정진환
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.2
    • /
    • pp.117-127
    • /
    • 1991
  • Coefficient of determination $R^2$ is most frequently used descriptive measure in practical use of linear regression analysis. But there have been controversies on defining this measure in the cases of linear regression without the intercept, weighted linear regression and robust linear regression. Several authors such as Kvalseth(1985) and Willet and Singer(1988) proposed many variations of $R^2$ to meet the situations. However, theire measures are not satisfactory due to the lack of a universal principle. In this study, we propose a unfied approach to defining the coefficient of determination $R^2$ using the concept of likelihood distance. This new measure is in good accordance with typical $R^2$ in linear regression and, moreover, can be applied to nonlinear regression models and generalized linear models such as logit and log-linear models.

  • PDF

Fast robust variable selection using VIF regression in large datasets (대형 데이터에서 VIF회귀를 이용한 신속 강건 변수선택법)

  • Seo, Han Son
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.463-473
    • /
    • 2018
  • Variable selection algorithms for linear regression models of large data are considered. Many algorithms are proposed focusing on the speed and the robustness of algorithms. Among them variance inflation factor (VIF) regression is fast and accurate due to the use of a streamwise regression approach. But a VIF regression is susceptible to outliers because it estimates a model by a least-square method. A robust criterion using a weighted estimator has been proposed for the robustness of algorithm; in addition, a robust VIF regression has also been proposed for the same purpose. In this article a fast and robust variable selection method is suggested via a VIF regression with detecting and removing potential outliers. A simulation study and an analysis of a dataset are conducted to compare the suggested method with other methods.