• Title/Summary/Keyword: 가용 에너지

Search Result 228, Processing Time 0.026 seconds

전자전 기술의 개발 경향과 전망(1)

  • Bang, Geuk-Saeng
    • Defense and Technology
    • /
    • no.1 s.131
    • /
    • pp.54-65
    • /
    • 1990
  • 미래의 전자전 체계들은 성능과 작전가용도가 증가되도록 요구될 것이며, 더욱 복잡해져 가고 있는 위협환경에 대응할수 있는 전자전 체계라야 할 것이다. 그러기 위해서는 유효복사 출력(ERP)을 높이고, ECM 에너지의 질을 더욱 개선하며, 방사에너지의 제어를 한층 잘해야 할 것이다. 이와함께 아주 높은 수준의 작전 가용도가 요구될 것인데, 이는 새로 개발되는 항공기들의 매우 높은 출격율을 유지하기 위한 것이다. 지원비용을 막대히 증가시키지 않고 이런 고도 수준의 가용도를 달성하려면 역시 신뢰성과 정비유지성을 상당히 개선해야만 한다

  • PDF

A Study on the Predictability of Moist Convection during Summer based on CAPE and CIN (대류가용잠재에너지와 대류억제도에 입각한 여름철 습윤 대류 예측성에 대한 연구)

  • Doyeol Maeng;Songlak Kang
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.540-556
    • /
    • 2023
  • This study analyzed rawinsonde soundings observed during the summer and early fall seasons (June, July, August and September) on the Korean peninsula to examine the utility of the Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in predicting the occurrence of deep moist convection and precipitation. Rawinsonde soundings are categorized into two groups based on thermodynamic criteria: high CAPE and low CIN represent a high potential for deep moist convection; low CAPE and high CIN indicate conditions unfavorable for deep convection. A statistical hypothesis test is conducted to determine whether the two groups are significantly different in terms of 12-hour cumulative precipitation, 12-hour mean cloud base, and 12-hour mean mid-level cloud cover. The results, in the case of no-precipitation, reveal statistically significant differences between the two groups, except for the 12-hour mean cloud base during the 21:01-09:00 KST time period. This suggests that the group characterized by high CAPE and low CIN is more conducive to the occurrence of deep moist convection and precipitation than the group with low CAPE and high CIN.

열교환기의 가용 에너지 최대전달 조건

  • 정평석;김창욱;김효경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.907-911
    • /
    • 1990
  • 본 연구에서는 비열이 일정하고 초기온도가 주어진 열원으로부터, 일정한 열 전달 용량의 열교환기를 사용하여 최대의 에너지를 전달시키기 위한 조건을 구해 보기 로 한다. 즉, 저온유동은 고온의 열원유동과 대항류로서 열교환하며 위치에 따라 저 온유체의 온도가 가역 단열압축 또는 팽창에 의하여 임의로 조절될 수 있는 일반적인 경우에 대하여, 저온유체가 최대의 가용 에너지를 흡수하기 위한 온도분포를 변분법 문제로서 해석하고 그에 다른 부수조건들을 검토하고자 한다.

Unavailability of electric equipments and analysis of long term unsupplied energy in Korea pourer system (우리나라 전력설비의 비가용률과 중장기 공급지장전력 추이 분석)

  • Lee, Jo-Lyeon;Cho, Kang-Wook;Ryu, Heon-Su;Kim, Kwang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.197-199
    • /
    • 2008
  • 중장기 전력계통의 신뢰도는 공급지장 에너지를 분석함으로써 평가할 수 있는데 이를 위해서는 발전설비와 송전설비의 정확한 비가용률 산정이 필수적이다. 본 논문에서는 우리나라의 발전기 비가용률과 송전선로 비가용률을 산정하고 이를 이용하여 중장기 전력계통의 공급지장 에너지의 추이를 분석한다.

  • PDF

Environmentally Available Potential of Renewable Energy in Korea: Onshore Wind and Photovoltaic (육상풍력 및 육상태양광의 환경적 가용입지 분석)

  • Lee, Young-Joon;Park, Jong-Yoon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.6
    • /
    • pp.339-354
    • /
    • 2021
  • The purpose of this study is to provide valuable information and data by analyzing the environmental status and potential forrenewable energy projects (or plans) based on environmental assessment (EA) data, so that more objective and scientific environmental assessments can be conducted. The study also suggests regional directions that could satisfy the goals of nature conservation and renewable energy. Based on the analysis of EA data that was conducted up until June 2019, the study analyzed the size, location and characteristics of both onshore wind power and onshore photovoltaic. The environmentally available potential by region was also derived by considering the main constraints and requirements related to the potential siting ofrenewable energy projects at the EA. Based on EA data, 63 out of 80 (79%) onshore wind power projects are shown to be located in mountainous areas. For onshore photovoltaic projects, a total of 7,363 projects were subjected to environmental assessment over the country. The environmentally potential area for onshore wind power, considering all the environmental regulatory factors, is 2,440 km2. For onshore photovoltaic, the environmentally available area estimated as idle farmland is 2,877 km2. The distribution and characteristics of the environmentally available potential of the region may be the most important factor that local governments should bear in mind in terms of promoting renewable energy development projects in the region. Based on the results of this study, even if we consider the national energy plan including the expected future increase, as well as environmental goals and socio-economic acceptance through an environmental assessment, the available resources forrenewable energy projects are not insufficient. It is possible to examine the adequacy of the target distribution rate of renewable energy sources by region taking into consideration the quantitative and scientific results such as the environmentally available potential data derived from this study.

A Design on FTSM for supporting High Availability in Wind Turbine Controller (풍력발전시스템에서 제어기를 위한 고 가용성의 FTSM 설계)

  • Kim, Young-Hwan;Son, Jae-Gi;Hwang, Tae-Ho;Ham, Kyoung-Sun;Hong, Ji-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.3-6
    • /
    • 2011
  • IT 기술의 발전에 따른 전력 사용량 증가로 인해서 친환경 재생 에너지에 대한 관심이 집중되고 있는 상황으로 다양한 재생 에너지자원 가운데 풍력에너지 개발이 전 세계적으로 급속히 증가하고 있다. 그러나 풍력발전기를 제어하는 제어기의 소프트웨어·하드웨어적인 문제로 인해 불규칙한 에너지 생산과 유지보수를 위한 비용이 증가함에 따라 최근에는 풍력제어기의 고장분석 및 고장 감내 제어에 대한 연구가 활발히 진행되고 있는 상황이다. 본 논문에서는 이와 같은 풍력발전기가 지속적으로 일정한 에너지 생산과 유지보수 절감이 가능하도록 하기 위해 풍력제어시스템 차원에서의 고장에 대해서 감내 가능한 고가용성의 미들웨어에 대한 구조를 제안한다. 풍력제어시스템의 고 가용성 미들웨어는 가상 운영체제를 기반으로 이중화 구조를 가지고 있으며, 주 운영체제에서 소프트웨어적인 고장이 발생 시 다음 우선순위의 가상 운영체제에서 지속적인 서비스를 제공할 수 있도록 각각의 가상 운영체제 환경을 관리한다.

A Study of Sewage Sludge Solubilization by Alkali and Ultrasonic pretreatment (알칼리처리와 초음파처리를 이용한 슬러지 가용화 연구)

  • Kim, Jae-Hyung;Yang, Hong-Gyu;Lee, Joon-Cheol;Park, Hong-Sun;Choi, Gwang-Geun;Pak, Dae-Won
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.84-89
    • /
    • 2011
  • In this study, individual(alkaline, ultrasonic) and combined(alkaline+ultrasonic) pretreatment effect on sewage sludge solubilization was investigated. COD solubilization rates increased with the dose of NaOH added: solubilization reached 27.6%. Additional alkaline agents did not increase solubilization further. Ultrasonic pretreatment achieved 33~39% solubilization when 140 W/L amplitude. In(alkaline(pre-treatment)+ultrasonic (after-treatment)) treatment, solubilization increased as the combined intensity in creased($70.4{\pm}9.4%$). SCOD rising rate(0.076) was achieved.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

hermodynamic Study on the Solubilization of Aniline by Cationic Surfactants (DTAB, TTAB, and CTAB) (양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화에 대한 열역학적 고찰)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1143-1152
    • /
    • 2019
  • In order to study the solubilization of aniline by cationic surfactants (DTAB, TTAB and CTAB), the solubilization constant (Ks) and thermodynamic functions were measured and calculated by using the UV-Vis method. The solubilization constants of aniline with the change of temperature were measured, and the effects of addition of ionic salts and organics on the solubilization constants were investigated. These effects of additives and temperature changes were compared and analyzed for each type of surfactant, and the solubilization of aniline was analyzed microscopically by comparing and evaluating the thermodynamic functions obtained from the solubilization constants. As a result, the Gibbs free energy and enthalpy changes were both negative and the entropy changes were positive within the measured range for the solubilization of aniline by cationic surfactants. The solubilization constant value decreased with increasing temperature and increased with increasing carbon chain length of the surfactant. As the concentration of ionic salts increased, the Gibbs free energy change increased at first and then decreased. In n-butanol solution, the Gibbs free energy change tended to increase continuously with increasing the concentration of n-butanol.

Design and Implementation of Flooding based Energy-Efficiency Routing Protocol for Wireless Sensor Network (무선 센서네트워크에서 에너지 효율을 고려한 단층기반 라우팅 프로토콜의 설계와 구현)

  • Lee, Myung-Sub;Park, Chang-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.371-378
    • /
    • 2010
  • In this paper, we propose a new energy-efficient routing algorithm for sensor networks that selects a least energy consuming path among the paths formed by node with highest remaining energy and provides long network lifetime and uniform energy consumption by nodes. The pair distribution of the energy consumption over all the possible routes to the base station is one of the design objectives. Also, an alternate route search mechanism is proposed to cope with the situation in which no routing information is available due to lack of remaining energy of the neighboring nodes. Simulation results show that our algorithm extends the network lifetime and enhances the network reliability by maintaining relatively uniform remaining energy distribution among sensor nodes.