• Title/Summary/Keyword: 가열속도

Search Result 491, Processing Time 0.027 seconds

A Study on Crystallization of Thermoplastic Aromatic Polymer (열가소성 방향족 폴리머의 결정화 특성에 대한 연구)

  • Park, Dong-Cheol;Park, Chang-Wook;Shin, Do-Hoon;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • Thermoplastic composite has been limitedly used in high performance aerospace industry due to relatively low mechanical properties even though it has various advantages. But, thermoplastic aromatic polymer composite has recently been researched and utilized much. In this study, PEEK and PPS neat resin film as representative thermoplastic aromatic polymer were processed through continuous heating, cooling and reheating cycle. Property change such as glass transition temperature and melting temperature were identified and crystallinity variation by different cooling rate were evaluated. In the first (heating) run, polymer specimens were kept for 5 minutes at higher temperature than melting point to remove previous thermal history, and crystallization reaction was controlled by adjusting cooling rate to 2, 5, 10, 20 and $40^{\circ}C/minute$ in the second (cooling) run. In the third (heating) run, specimen crystallinity were verified by measuring the melting enthalpy. The initial specimens containing high portion of amorphous structure exhibited cold crystallization and clear glass transition in the first run whereas they did not show in the third run due to the increase of crystalline structure portion. As cooling rate decreases through the second cooling run, the crystallinity of the specimen increased. PEEK polymer had 21.9~39.3% crystallinity depending on cooling rate change whereas PPS polymer showed 29.1~31.2%.

Sterilization of Gochujang Sauce with Continuous Ohmic Hea (연속 옴가열 장치를 이용한 고추장 소스의 살균)

  • Choi, Jun-Bong;Cho, Won-Il;Jung, Jung-Yoon;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.474-479
    • /
    • 2015
  • In this study, five different Gochujang (a traditional Korean sauce prepared using fermented red pepper paste) sauces were heated at $100^{\circ}C$ for 5 min using a continuous ohmic heating system. Ohmic heating yielded greater reduction in microbial counts (90-95% reduction) than did conventional heating (65-75% reduction). The sterilization effect of the continuous ohmic heater increased with increasing sample flow rate and decreasing Reynolds number inside the pipe. Low-viscosity samples had higher electrical conductivity and were better suited for ohmic heating than were high-viscosity samples. The color and texture were also satisfactorily maintained after ohmic heating. Compared with conventional heating, ohmic heating provided rapid and uniform heating, which is more suitable for aseptic thermal processing of viscous foods.

A Study on the Wigner Energy Release Characteristics of Irradiated Graphite of KRR-2 (연구로 2호기 중성자 조사 흑연의 Wigner 에너지 방출 특성 연구)

  • Jeong Gyeong-Hwan;Yun Sei-Hun;Lee Dong-Gyu;Jung Chong-Hun;Lee Keun-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.209-216
    • /
    • 2006
  • Characteristics of heat release process, while the Wigner energy was drawn off the graphite during DSC(Differential Scanning Calorimenter) measurement as an example of annealing process which is one of release methods of Wigner energy that is contained in the irradiated graphite, was studied. Linear temperature rise method in DSC operation was selected to estimate the total Wigner energy content and the heat release rate of each graphite samples, which were located in several positions in the thermal column in KRR-2 research reactor. As an annealing process in DSC operation Wigner energy of the irradiated graphite samples were totally released by heat supplying to the graphite from room temperature to $500^{\circ}C$, in DSC. Characteristics of Wigner energy release from the graphite sample was well correlated with the various activation energy model of the kinetic equation.

  • PDF

Fire Resistance of Ultra-High Performance Concrete According to the Amount of Polypropylene Fiber (폴리프로필렌 섬유 혼입량에 따른 초고성능 콘크리트의 내화 특성)

  • Choi, Jeong-Il;Cho, Ki Hyeon;Yu, Hyun Sang;Kim, Hee Joon;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2020
  • The purpose of this study is to investigate the fire resistance of ultra-high-performance concrete according to the amount of polypropylene fiber. Different mixtures according to the amount of polypropylene fiber were exposed to a maximum temperature of 900℃; and explosive spalling, residual compressive strength, and ultrasonic velocity of each specimen were evaluated. Test results showed that the fire resistance can be improved by including a small amount of polypropylene fiber in ultra-high performance concrete. It was not observed that explosive spalling occur at a temperature of 900℃ when the polypropylene fibers over 0.4% were included. Residual compressive strength and ultrasonic velocity decreased by 48% and 44%, respectively, compared to those at room temperature.

Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System (에폭시/폴리옥시프로필렌 디아민계의 경화 반응속도 및 동역학 특성 분석)

  • Huang, Guang-Chun;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2011
  • The cure kinetics of a bisphenol A epoxy resin and polyoxypropylene diamine curing agent system are investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the shift of exothermic peaks obtained at different heating rates is used to obtain activation energy of overall cure reaction based on the methods of Ozawa and Kissinger. Isothermal DSC data at different temperatures are fitted to an autocatalytic Kamal kinetic model. The kinetic model is in a good agreement with the experimental data in the initial stage of cure. A diffusion effect is incorporated to describe the later stage of cure, predicting the cure kinetics over the whole range of curing process. Also, dynamic mechanical analysis is performed to evaluate the storage modulus and average molecular weight between crosslinkages.

Effect of Moisture Content on Viscosity of Starch Dough (전분반죽의 점도에 미치는 수분함량의 영향)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.582-592
    • /
    • 1995
  • To measure rheological properties of the starch dough, an Extrusion Capillary Viscometer(ECV) cell was self-made and attached to Instron machine(Model 1140). Apparent viscosities of corn and waxy corn starch doughs were measured and their gelatinization degrees were determined by enzymatic analysis. When corn and waxy corn starch doughs with $36{\sim}52%$ moisture content were heated at $60{\sim}100^{\circ}C$, come-up time of the cold point of doughs decreased from 220 sec to 140 sec with increased in the moisture content. In the measurement range of $36{\sim}52%$ moisture content and $60{\sim}100^{\circ}C$ heating temperature, both corn and waxy corn starch doughs showed pseudoplastic flow behaviors. At the same shear rate, both shear stress and viscosity of starch dough decreased as the moisture content increased. At the moisture content above 44%, the shear stress and viscosity of starch dough decreased as the heating temperature increased from $60^{\circ}C\;to\;70^{\circ}C$, but increased as the heating temperature increased from $80^{\circ}C\;to\;100^{\circ}C$. When the moisture content increased and heating temperature, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The effects of moisture content on the viscosity of starch dough were examined by Arrhenius equation. As the moisture content increased, viscosity of starch dough decreased. But the effect of moisture content was greater in the range of $80{\sim}100^{\circ}C$ than in the range of $60{\sim}70^{\circ}C$ heating temperature.

  • PDF

Barium atomic beam generation and atomic velocity selection (복사가열방식 오븐에 의한 배리움 원자빔 발생과 공명 형광의 광자수 셈 방법에 의한 배리움 원자빔의 밀도 및 속도분포 측정)

  • 박상범;안경원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.72-73
    • /
    • 2000
  • 단원자를 이용한 Cavity-QED 실험을 통해서 광자 수상태 및 sub-poissonian 광원 구현 및 비고 전적인 광 특성을 가지는 광원등을 구현 할 수 있다. 이를 위해서는 오랫동안 공진기 안에 포획하거나, 빔의 형태로 단원자들이 일정시간 동안 공진기를 지나게 해야 한다. 본 연구는 안정한 원자빔 속도제어 실험에 관한 것으로 자체 제작한 원자빔 오븐의 특성과 원자빔 속도 선택기의 제작, 속도 선택 결과에 대하여 논하고자 한다. (중략)

  • PDF

Simulation of plate deformation due to line heating considering water cooling effects (수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션)

  • Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2470-2476
    • /
    • 2011
  • Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.

Effect of Processing Conditions Upon Heat Stability and Structure Formation in Fish Protein (생선단백질의 열안정성과 조직형성속도에 공정조건이 미치는 영향)

  • Park, Sung-Jin;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.463-469
    • /
    • 1992
  • Effect of thermal processing upon the structure formation of surimi was investigated by differential scanning calorimeter (DSC), rigidity changes during heating, and scanning electron microscopy (SEM). DSC studies showed the transition temperatures and heat capacity of the proteins during heating. Thermal transition peaks of the proteins were shifted to the lower temperatures or disappeared by the addition of salt and higher heating rate or setting treatment ($4^{\circ}C$ or $40^{\circ}C$). Whereas setting at $4^{\circ}C$ for 24hr produced elastic component and showed a permanent effect in rigidity development during heating, setting at $40^{\circ}C$ for 30 min produced a temporary effect. SEM studies in conjunction with rigidity scanning provided an insight into the structural features of the gel and helped clarify the setting and protein modification effects.

  • PDF

Kinetic Study on the Color Deterioration of Crude Anthocyanin Extract from Schizandra Fruit (Schizandra chinensis fructus) (오미자 색소 추출물의 가열 변색에 대한 속도론적 연구)

  • Cho, Sung-Bin;Kim, Hyun-Jung;Yoon, Jong-Il;Chun, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • The effects of temperature and pH on color deterioration of anthocyanin in Schizandra fruit (Schizandra chinensis fructus) were determined with temperature range of $80{\sim}100^{\circ}C$ and pH range of $2.0{\sim}5.0$. Browning index was used as an index of color deterioration of crude anthocyanin extract from Schizandra fruit. As pH of crude anthocyanin extract was increased, color deterioration was accelerated, showing pH-dependency of thermal stability of anthocyanin extract from Schizandra fruit. Anthocyanin degradation could be modeled as a second-order rate reaction, with rate of $3.2{\times}10^{-3}\;h^{-1}\;(pH\;2.0){\sim}4.1{\times}10^{-3}\;h^{-1}\;(pH\;5.0)\;at\;100^{\circ}C$. Temperature dependence of deterioration was described by the Arrhenius relationship. Activation energies for pH $2.0{\sim}5.0$ ranged from $24.87{\sim}42.54\;kJ/mol^{-1}$.