• Title/Summary/Keyword: 가연 한계

Search Result 56, Processing Time 0.034 seconds

다공성 물질에 의한 열재순환 화염에 관한 실험적 연구 I

  • 유영돈;민대기;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1113-1120
    • /
    • 1988
  • This paper presents the results of an experimental investigation on one dimensional excess enthalpy flame formed in a porous block. The investigation is undertaken in order to further the physical understanding of internal heat recirculation from reaction zone to unburned mixture. Two porous blocks are placed at both sides of combustion block to control the temperature distribution in the combustion block by means of radiation heat transfer. Mean temperature measurement reveals the general nature of the reaction zone in the porous material. It is conformed that the temperature of reaction zone exceeds the adiabatic flame temperature and the flame is stabilized at the out range of flammibility limit derived by conventional burner.

An Experimental Study on Explosion Hazard of Dry Cleaning Solvent Recovery Machine in Laundry (세탁소 유기용제 회수건조기의 폭발 위험성에 관한 실험적 연구)

  • Choi, Jung-Min;Son, Bong-Se;Kim, Dong-Suk
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • This study analyzes the explosion hazard of dry cleaning solvent recovery machine in laundry shop in two aspects, i.e. combustible and ignition source, and determines the explosive conditions of this machine by conducting mockup explosion tests repeatedly, varying conditions and using real dry cleaning solvent recovery machines. As to combustibles, two kinds of combustibles used widely in Korea have been selected and tested. The flash points, LEL's, and saturation vapor pressures of those combustibles have been measured, and their explosion specific curves have been drawn, based on the results of the measurements, so that the explosion risks of those materials may be determined, depending on the temperatures. Potential voltages generated from materials for laundry and foreign materials of metals have been assumed to be the ignition sources in this application, and their potential voltages have been measured, depending on temperature, humidity, and antistatic agent, by using real materials for laundry and a potential voltage measuring device. Tests have been conducted, varying the quantities, concentrations, and operating temperatures of materials for laundry. As a result, explosions have not been generated with potential voltages of materials for laundry, but explosions have been observed when applying artificial spark energy of 2.0 mJ.

A Study on Characteristics of the SI Engine Using Methanol Reformulated Fuels (메탄올 개질연료를 사용한 가솔린 기관 실험 연구)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • In this experimental research, it was studied to compare with pure gasoline and the fuels of RM50 (reformulated methanol fuel) for performance and exhaust emissions without reconstruction of engine systems. RM50 has a wider range of combustion limitation, which is one of the methanol's characteristics. This causes a stable driving state of RM50 in the experimental condition of unstable state and a low cycle by cycle variation which is used to determine the driving state. It is determined that fuel stability is better because cycle by cycle variation varies within 10%, therefore, driving characteristics is relatively good. In all conditions, RM50 has lower exhaust emissions of CO, HC, NOx than gasoline fuel, however, RM50's noise characteristics are 0.5~2dB higher at all condition, and in the result of the experiments of rubber fusion, it increases the utility possibility of RM50.

An Improvement of Fire Safety Code for Rack-Type Warehouse in Korea (국내 랙크식 창고의 방화관련 규정 개선에 관한 연구)

  • Kim, Woon-Hyung;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.69-75
    • /
    • 2014
  • Recently Amore pacific rack-type warehouse fire broke out and argue an urgent improvement of fire protection design code including automatic sprinkler and detection design. Various type of commodities have their unique fire characteristics from fire spread rate and heat lease rate and fire hazard depends on storage height, rack arrangement, aisle width, fire load etc. With increasing ceiling height for more storage space prevent effective water spray of sprinkler head, also delays detection time causes failure of early suppression. To achieve fire protection code performance of this occupancy, Major code articles relating to a classification of commodity, sprinkler system installation, detection and fire fighting are reviewed and suggested based on fire case analysis, code review between country and field survey.

A Study of the Suppression System based on the Fire Protection System the Korea Cultural Property due to the Forest Fire -About Water Mist System- (산림화재로부터 문화재를 보호하는 소방시설에 관한 연구 -미분무수설비를 중심으로-)

  • Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.44-51
    • /
    • 2007
  • Most of the Korea temples of cultural property are wooden buildings and easy combusted. They are often located in mountain area far away from the city. It is very difficult to approach the fight area. The putting out is very difficult in the initial fire time. And for protecting the cultural property in the long-term continuous fire source there are some restrictions in water source and suppression system. In this paper the initial putting out fire due to the forest fire and the protection of cultural property in the long-term continuous fire source were researched. The improved project about fire control facilities of the Korea cultural property was proposed. In the proposed project the facilities using Water mist which can reduce more loss than existing facilities using water are applied. In view of the topographic position the method of eliminating the energy of combustibles and wall for cutting off the heat in the fire control facilities are also mentioned.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

Development of Hybrid/Dual Jet Combustor for a MGT (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part I: 형상 최적화를 위한 실험연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.60-69
    • /
    • 2013
  • An optimum configuration of the hybrid/dual swirl jet combustor for a micro-gas turbine was investigated experimentally. Location of pilot nozzle, angle and direction of swirler vane were varied systematically as main parameters under the conditions of constant thermal load. The results showed that the variation in locations of inner fuel nozzle and pilot burner resulted in significant change in flame shape and swirl intensity due to the changes in recirculating flow pattern and minimum flow area near burner exit, in particular, with the significant reduction of CO emission near lean-flammability limit. In addition, it was observed that the co-swirl configuration produced less CO and NOx emissions compared to the counter-swirl configuration.

Numerical analysis on performances and emission characteristics of HCCI engine fueled with hydrogen added biogas (반응 메커니즘 기반의 수소 첨가 바이오가스 HCCI 엔진 성능 및 배출가스에 대한 수치 해석적 연구)

  • Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • In this research, numerical analysis was performed to determine the effects of hydrogen on biogas combustion for homogeneous charged compression ignition (HCCI) engines. The target engine specifications were a 2300cc displacement volume, 13:1 compression ratio, 15kW of electricity, and 1.2 bar boost pressure. The engine speed was fixed to 1800rpm. By varying the excess air ratio and hydrogen contents, the cylinder pressure, nitric oxide, and carbon dioxide were measured as a function of the hydrogen contents. According to preliminary studies related to the reaction mechanism for methane combustion and oxidation, a GRI 3.0 mechanism as the base mechanism was selected for HCCI combustion calculations describing the detailed reaction mechanism. By adding hydrogen, NO was increased while $CO_2$ was decreased. The cylinder pressure was also increased, having advanced timing for the maximum cylinder pressure and pressure rise region. Furthermore, lean operation limits were extended by adding hydrogen to the HCCI engine.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.