• Title/Summary/Keyword: 가연성가스

Search Result 236, Processing Time 0.025 seconds

Study on the Correlation between Air Emission Gas and Alternative Fuels Used in Cement Sintering Process (시멘트 소성공정에 사용된 대체연료와 대기배출가스간 상관관계 연구)

  • Choi, Jaewon;Baek, Ju-Ik;Kwon, Sang-Jin;Won, Pil-Sung;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.286-293
    • /
    • 2020
  • In this study, we tried to verify the correlation of the amount of combustible industrial by-products, household waste used as fuels on cement sintering process and the amount of NOx, and CO, harmful components in the exhaust gas. The analysis uses coal as natural fuel, soft plastics (plastics with properties that tend to be scattered by wind, such as vinyls), hard plastics (plastics with properties that are not scattered by wind, such as PETs, wate rubbers), and reclaimed oils as alternative fuels. Utilizing the response surface analysis (RSM) technique using the process data of 2019, such as the fuel input and combustion temperature of a domestic A cement manufacturer's sintering facilities as independent variables, and the NOx, and CO emissions to the stack as dependent variables. Correlation was analyzed. As a result, it was confirmed that the impact on the emission material differs for each waste. In particular, it was analyzed that the hard plastics increase the CO emission but have an excellent effect of reducing NOx.

Evaluation of Basin-Specific CH4 emission flux from Intertidal Flat Sediments of Sogeun-ri, Taean, Mid-west Korea (한국 서해안 태안 소근리 갯벌의 메탄가스 발생량 특성)

  • Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Lee, Dong-Hun;Jang, Seok;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.281-291
    • /
    • 2014
  • In March to August 2013, the emission of gases ($CH_4$, VOC, $CO_2$, $O_2$, and LEL) was measured three times from the intertidal flat sediments at Sogeun-ri, Taean-gun, in the Mid-western seashore of Korea by using chamber method. After analyzing gas emission concentrations inside of flux enclosure chamber by using a GC equipped with Agilent 6890. The gas emission fluxes were calculated from a linear regression of the changes in the concentrations with time. The ranges of gas flux during the experimental period were $+0.06{\sim}+0.60mg/m^2/hr$ for $CH_4$, $+58.45{\sim}+95.58mg/m^2/hr$ for $CO_2$, $-0.02{\sim}-0.20mg/m^2/hr$ for $O_2$, and $-0.60{\sim}+0.65mg/m^2/hr$ for VOC, respectively. The flux measurement results revealed that $CH_4$ fluxes during March in the relatively low sediment temperature ($14.5^{\circ}C$) were significantly higher ($+0.60mg/m^2/hr$) than during June and August ($+0.06{\sim}+0.18mg/m^2/hr$) in high sediment temperature ($32.0{\sim}36.8^{\circ}C$). $CH_4$ flux to mean size of sediments and temperature of inner chamber exhibited strong positive correlation ($R^2=-0.97$ and $R^2=-0.89$, respectively).

Study of the Fire Risk Caused by the Use of a Bimetal type Thermometer in the Drying Equipment (바이메탈식 온도센서를 적용한 건조설비에서의 화재 위험성 연구)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Park, Jong-Taek;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • In this paper, the fire risk using a bimetal type thermometer for construction installation is presented. Because construction equipment is used widely in the field and the site is exposed to explosions and fire by combustible gas or fume, strong restrictions on the structure and usage are applied. Moreover, the risk of fire increases as precise temperature measurements are poorly conducted via an inner temperature sensor inside construction furnace. Therefore, this paper presents the results of structural analysis of a bimetal temperature sensor which is used widely in construction installation and temperature measurement experiments relative to the material property of the target object. The results revealed the relatively precise temperature of the liquid object, whereas those of the gas and solid object showed a lower temperature compared to the real temperature. This shows that bimetal-type temperature sensor is more suitable for measuring a liquid state object than measuring a gas or solid state object.

Physical Properties of Mineral Hydrate Insulation Used Desulfurization Gypsum (탈황석고를 사용한 미네랄 하이드레이트 단열소재의 물리적 특성 연구)

  • Park, Jae-Wan;La, Yun-Ho;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.291-296
    • /
    • 2014
  • For the purpose of energy consumption and green-house gas reduction from building, new insulation materials with improved thermal property have been developed and used. Among new insulation materials, mineral hydrate which compensates for the defects of existing materials is using as a prominent insulation material. The fabrication method of mineral hydrate is similar to that of ALC for building structure but mineral hydrate is only used for insulation. The raw materials that make up of mineral hydrate are cement, lime and anhydrite. Especially anhydrite is all dependant on imports. In this study, Desulfurization Gypsum(DG), by-product of oil plant, was used for replacing for imported anhydrite and waste recycling. DG substituted all of anhydrite and a part of lime. Mineral hydrate used DG had analogous thermal and physical properties, compared to existing mineral hydrate.

A Study on Fire Analysis According to Temperature Characteristics of an Incandescent Electric Lamp at 220V/100W (220V/100W 백열전구의 온도특성에 따른 화재분석에 관한 연구)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, we are studied on the temperature characteristics and fire progress of an incandescent electric lamp at 220V/100W. In the case of stationary state, the ignition possibility of the incandescent electric lamp due to the heat generation was low because the temperature was measured at $161.9^{\circ}C$ the temperature was increased at $538.1^{\circ}C$ in the airtight chamber, but it does not generated the fire because the oxygen was not exist in the airtight chamber. When the lamp is broken, the filament of lamp was melted in the air. The gas of lamp interior spurted to the weakest part by external flame. Thus, the incandescent electric lamp is high possibility of fire when oxygens from airtight space. Also, it is known that the possibility of ignition is very high if combustion materials(sawdust) exists on surrounding. These experimental results will be utilized for the data in the investigation electrical fire cause.

A Numerical Study of Fire Dynamics of The Enclosed Compartment with Window Glass Breaking (밀폐된 구획의 창유리 파단시 화재 특성에 관한 수치적 연구)

  • 전흥균;최영상
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 1998
  • The use of computer supported fire safety engineering calculations has grown significantly in recent years and will be increased rapidly. In this study, in order to examine for fire dynamics of the enclosed compartment with window glass(3mm, 4mm thickness) when the window glass breaks, we conducted numerical computer simulations about foam sofa fire with the zone type computer mode, FASTLite package(version 1.1.2) and the Berkeley algorithm for breaking window glass in a compartment fire, BREAK1 program (version 1.0). The analysis of the results in this paper shows that there are differences of fire dynamics between open-or enclosed-state compartment fire and the enclosed compartment fire with window glass breaking. It is also shown in this study that backdraft phenomenum occurs due to accumulated unburned combustible fuel when the glass of 4mm thickness breaks, and that temperature differences between the inner-and outer-surfaces of 3mm and 4mm thick glasses are appreciable. This study will help fire fighter to establish fire suppression or occupant's refuge strategies and fire safety engineer to enhance simulation techniques about the five dynamics of compartment fire.

  • PDF

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Plastic Fire of Commercial Building (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 - 판매시설의 플라스틱 화재를 중심으로 -)

  • Jang, Hyo-Yeon;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.55-62
    • /
    • 2018
  • To improve the prediction result with enhanced reliability of domestic Performance-Based Design (PBD), actual scale fire tests were carried out on products made of plastics from sales facility combustibles. The commercial buildings were separated into single and multiple combustibles for the experimentation of fire spread caused by the sales shelves where the various combustible materials are displayed. A according to the maximum heat release rate, exposed area and weight of the combustible material, the results revealed a linear relationship of as 93% and 89%. In addition, analysis of the gas concentrations for various combustibles showed that $CO_2$ has a linear relationship, whereas the CO concentration indicated exponential function. These results can be applied to reliable fire source information in PBD of plastic fire source in commercial buildings. This may be applied as fire source information representative of a plastic fire in commercial buildings through additional experiment using the area of the shelf in actual commercial buildings.

Remote Monitoring System for Environment Measurement in Industrial Field (산업현장의 환경계측을 위한 원격 모니터링 시스템)

  • Lee, Hwa-Yeong;Park, Yong-Jun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.25-27
    • /
    • 2022
  • Recently, with the development of the 4th industry, environmental issues such as air pollution have become serious, and in particular, a lot of air pollutants are generated in industrial sites. There are various types of air pollutants, and among them, carbon monoxide is essential for fires occurring in industrial sites, so it should be possible to monitor in real time. In addition, there is a need for a remote monitoring system that can measure various environmental factors other than air pollutants in real time. In this paper, we propose a monitoring system using wireless communication to remotely measure the industrial environment. The proposed monitoring system collects data to the Arduino of the transmitter by using a carbon monoxide sensor, a combustible gas sensor, a temperature and humidity sensor, and a flame sensor, and then transmits it to the receiver using ZigBee. The transmitted data is stored in the database of the receiver Raspberry Pi, and the stored data can be monitored in real time through the monitoring system.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.