• Title/Summary/Keyword: 가압(pressurization)

Search Result 164, Processing Time 0.021 seconds

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구(II))

  • Chung, Yong-Gahp;Kim, Yong-Wook;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • Propellant pressurization system in liquid rocket propulsion system plays a role in supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출 시 온도강하율에 대한 연구 (II))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.58-64
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

  • PDF

Assessment of Continuous Pressurization Method for Soil-water Characteristic Curve (연속 가압 함수특성 시험 평가에 관한 연구)

  • Park, Hyun-Su;Kim, Byeong-Su;Lee, Eo-Ryeong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.5-13
    • /
    • 2019
  • The soil-water characteristic curve (SWCC) plays an important role in determining the soil suction parameters required to predict the seepage or shear behaviors of unsaturated soils. In addition, path dependency of the SWCC affects the mechanical and hydrologic behaviors. In general, there is a disadvantage that it takes a long time to measure both the drying and wetting paths of the SWCC by a stepwise pressurization method. Thus, the continuous pressurization method as an improved testing method for the SWCC was suggested, and the testing time for two paths of the SWCC was significantly shorter than the conventional methods. For the applicability evaluation of this method, the results of the SWCC obtained by the stepwise pressurization method and the evaporation method in this study were compared to the result obtained from this method. As a result, it was found that the difference among three methods was negligible, and the testing time of the continuous pressurization method was greatly decreased. Therefore, it can be said that it is possible to quickly and accurately measure the SWCC under various conditions by the continuous pressurization method.

Numerical Analysis on Pressurization System of Smoke Control in Consideration of Flow Rate of Supply and Leakage (보충량과 누설량을 고려한 급기가압 제연시스템의 수치해석 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.87-93
    • /
    • 2010
  • The fact that the smoke hinders evacuation and fire-fighting activities as well as becomes the major cause of life casualty emphasizes the importance of smoke control system. As one of the fire safety standards designed to secure the smoke safety, NFSC501A (Design Guide for Smoke Control System of Special Evacuation Stairwell and Lobby) has been proposed, preventing smoke from penetrating into the smoke-free escape route by raising the pressure of the smoke control zone higher than fire area. For model building of 20 stories, pressurization system was designed according to standard and pressure field of compartments in whole building induced by pressurization system was analyzed using the network model.

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

Calculation of pressurization efficiency of cryogenic propellant tank (극저온 추진제탱크 가압효율 계산)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Kil, Gyoung-Sub;Han, Sang-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • In this paper, the energy flows related to cryogenic propellant tank ullage were understood and pressurization efficiency of the tank was calculated using propellant feeding test data with the help of calculation program. The related energy flow terms and calculation method of each terms were described. Three test data of different tank pressure and incoming pressurant temperature were used. Under the test conditions, the pressurization efficiency was low in the range of 13.9%~19.3%. The proportion of energy loss to the incoming pressurant energy was in the range of 55.2%~67.6%. The energy loss to the propellant tank wall was the biggest one. If the temperature of incoming pressurant was the same, the rates of each energy flows to the incoming energy were almost the same regardless of the propellant tank pressure. The collapse factor of propellant tank was calculated using test data, and the relation of it to the heat loss rate was observed.

Preparation of the Multilayer Membrane Using the Phase Separated and Pressurization (PSP) Method (가압식 코팅법을 이용한 다층막 제조)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.391-397
    • /
    • 2015
  • The porous support polyvinylidene fluoride (PVDF) with a salting out based on the hollow fiber membrane polyethyleneimine (PEI) and polyvinylsulfonic acid (PVSA) by coating with by phase separated and pressurization (PSP) method to produce a multilayer membrane. The resulting membranes were characterized under the various conditions, such as the heat treatment temperature, coating concentration, feed concentration, cross-linking time and cross-link agent concentration in terms of flux and rejection rate for NaCl 100 ppm solution at 4 atm. The best results were PEI 20,000 ppm and PVSA 1,000 ppm, PEI 15% with a 2% malic acid aqueous solution coated by PSP method the hollow fiber membrane heat-treated for 1 minute showed flux 24.3 LMH, the rejection of 82.1%.

Development of Propellant On-Board Feeding System of Pump-fed Liquid Rocket Propulsion System (터보펌프식 발사체 추진기관의 기체공급계 개발)

  • Cho, Nam-Kyung;Jeong, Yong-Gahp;Kwon, Oh-Sung;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.122-126
    • /
    • 2006
  • Two types of pressurization system and low weight feeding piping system are developed. With sub-system tests, ullage pressure control performance was verified for 1 step and 2 step pressurization system and the feeding performance of feeding piping system was also verified. The weight of the feeding piping system is low enough for the application of launch vehicle. In addition, LOX conditioning system is developed for avoiding geysering and LOX temperature rise. Integrated performance was verified through integrated on-board feeding system performance tests.

  • PDF

Heating Apparatus Development for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.363-367
    • /
    • 2009
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

  • PDF

Heating Apparatus Development and Tests for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발 및 시험)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.