• Title/Summary/Keyword: 가스-액체

Search Result 596, Processing Time 0.022 seconds

Behaviour of Condensing Gaseous Species by Injection of Liquid Adsorbents (HMDS) in Combustion Facility (액체상흡착제(HMDS) 주입조건에 따른 응축성 가스상 물질의 거동특성 비교)

  • Kim, Yong-Gu;Lee, Sang-Yul;Bong, Choon-Keun;Kim, Hyun-sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.285-292
    • /
    • 2015
  • In this study, we were clearly identify the behaviour characteristics on particle size distribution of a condensing species by injection condition of HMDS (Hexa Methyl Di-Silazane, silica precursor that is one of liquid adsorbents) to remove condensing gaseous species as using pyroligneous liquor generated during carbonization process of biomass as precursor of condensing gaseous species. When using HMDS to remove the condensing gaseous species by growth machanism of particles, we could be controlled properly particles size such as amount of adsorbent injection, residence time, heating temperature and MFC flux. Especially, in case of using the silica precursor, in consideration of the physical and chemical properties of the boiling point, the specific gravity and the molecular weight, we found that the condensing species could be effectively controlled by particles granulation.

Numerical Analysis on the Startup of a Rocket Engine (로켓 엔진의 시동에 관한 해석적 연구)

  • Park, Soon-Young;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-71
    • /
    • 2007
  • The startup characteristic of liquid propellant rocket engine should be focused on the stable ignition of combustion chamber and gas generator. Also, to lessen the propellants consumption during this period which doesn't contribute to the flight thrust, the engine has to be transferred to the nominal mode quickly. Because of the risk of test, it is impossible to develop all the startup cyclogram or the specifications of engine by test, so the precedent numerical approach is quite necessary. In this study we developed a mathematical model for the startup phenomena in a liquid rocket engine driven by gas generator-turbopump system based on the commercial 1-D flow system analysis program, Flowmaster. Using this program we proposed a methodology to obtain the specifications of turbine starter and the opening time of shutoff valves for the stable startup of the engine. To verify this methodology we qualitatively compared the analysis results to the typical startup curve of the published engine, then found it is quite well matched.

Design of Compressed Gas Supply System for Combustion Chamber Test Facility (연소기 연소시험설비 고압가스 공급시스템 설계)

  • Chung, Yonggahp;Cho, Namkyung;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2014
  • To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The CCTF is the test facility to develop the combustor of rocket engine, which uses liquid oxygen as a oxidizer and kerosene as a fuel. Present paper introduces the detailed design results of compressed gas supply system of CCTF, which is planned to be installed at Naro Space Center.

Hot-firing Test of Technology Demonstration Model Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 가스발생기 기술검증시제의 연소시험)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.225-228
    • /
    • 2009
  • Hot-firing tests were performed on the gas generator which is a technology development/demonstration model for a 75 ton-class liquid rocket engine. A heat-sink type combustion chamber was used for initial performance examination of the injector and mixing head. This paper explains not only preparation works for hot-firing tests but also the acquired results such as pressure, temperature distribution, and pressure fluctuation.

  • PDF

Combustion Stability Characteristics of Fuel-Rich Gas Generators (연료 과농 가스발생기의 연소 안정성 특성 연구)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.119-122
    • /
    • 2007
  • The present study employs experimental approach to identify combustion stability characteristics of fuel-rich gas generators. The gas generator of interest, fueled by LOx and Jet A-1, experienced combustion instability coupled to a longitudinal resonant mode of the combustion chamber at about 1200 Hz. The occurrence of instability is strongly associated with acoustic boundary condition at the exit .and axial location of maximum heat release. As a result, stretching heat release zone in the axial direction by increase of the fuel nozzle diameter has dramatically stabilized combustion.

  • PDF

Spray and Combustion Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 분무 및 연소 특성)

  • Hwang, Jin-Seok;Koo, Ja-Ye;Seong, Hong-Gye;Kang, Jeong-Seek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • Jet-A spray, evaporation and combustion were numerically analyzed in annular type model combustor using KIVA-3V. Liquid fuel's atomizing was affected by flow field near droplet. When cooling flow was not optimized, SMD was increased, and equivalence ratio was horizontally distributed in combustor's downstream. Flame spread out horizontally and separated in combustors downstream. Flame center was separated by cooling flow. Flame separation made local high temperature in downstream that caused NO increase.

  • PDF

An experimental study on the liquid rocket engine combustion gas cooling (액체로켓 엔진 연소가스 냉각에 관한 실험적 연구)

  • 김현중;유석진;임하영;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.266-269
    • /
    • 2003
  • During liquid rocket engine combustion, the resulting combustion gas has flow characteristics of high temperature and high velocity. An experimental study was performed to obtain basic data for a flame deflector design that is endurable under such flow characteristics. While the injected-water cools down the combustion plume, temperature and pressure of the plume was measured. As the experiment is being performed, gas temperature was measured using infrared cameras, and the gas temperature data was compared with the temperature data from the sensor in the plume. With the results of this experiment, we were able to obtain applicable temperature data for flame deflector design and predict the performance and structural strength required for installation of water injector.

  • PDF

Hot-firing Test Results of Subscale Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 액체로켓엔진 축소형 가스발생기 연소시험 결과)

  • Kim, Mun-Ki;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.726-728
    • /
    • 2010
  • A subscale gas generator was designed and manufactured to investigate the effect of design parameters on discharge coefficients of injectors for a 75 ton-class gas generator and hot-firing tests were successfully performed. The test results showed that discharge coefficients of fuel and liquid oxygen injectors remained nearly constant irrespective of variations of a mixture ratio and a chamber pressure. When the post diameter of the liquid oxygen injector was reduced, the discharge coefficient was increased as the pressure drop of the injector was decreased.

  • PDF

Hot-firing Tests of Subscale Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 액체로켓엔진 축소형 가스발생기 연소시험)

  • Kim, Mun-Ki;Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.173-176
    • /
    • 2010
  • A subscale gas generator was designed and manufactured to understand a reason for increased pressure drop of liquid oxygen injectors observed in a technology demonstration model of a 75 ton-class gas generator. A total of 6 hot-firing tests were successfully performed including experimental conditions of design and off-design points. The hot-firing results showed that discharge coefficients of fuel and liquid oxygen remained constant as the mixture ratio varied at a fixed chamber pressure. At a fixed mixture ratio, it was also found that discharge coefficients of fuel and liquid oxygen was constant as the chamber pressure was increased.

  • PDF