• Title/Summary/Keyword: 가스 작업자

Search Result 100, Processing Time 0.035 seconds

Predicting and Preventing Damages from Gas Leaks at LPG Stations (LPG 충전소의 가스누출에 따른 피해예측 및 감소방안)

  • YANG-HO YANG;HA-SUNG KONG
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.577-585
    • /
    • 2023
  • This study applied ALOHA Program to predict the damage caused by fire and explosion predicted to occur from gas leakage at LPG stations and presented plans to prevent damages by diagramming the impact range and distance. The propane gas leakage from LPG stations causes human damage like breathing issues and property damage, including building destruction to residents in the surrounding areas. As a way to reduce this, first, the hazardous substance safety manager of the LPG station needs to check frequently whether the meters and safety valves are working properly to prevent leakage in advance. Second, the LPG stations' storage tanks should be worked by the person who received "hazardous substance safety manager training" under the provisions of the Act on the Safety Control of Hazardous Substances and has been appointed as a "hazardous substance safety manager" by the fire department. Third, LPG station's various safety device functions, such as overfill prevention devices, must be checked on a regular basis. Finally, wearing work clothes and shoes that prevent static electricity at LPG stations is highly recommended, as static can cause a fire when gas leaks.

A Study on Workers' Risk-Aware Smart Bands System in Explosive Areas (폭발위험지역 근로자 위험 인지형 스마트밴드시스템에 대한 연구)

  • Lee, Byong-Kwon
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 2019
  • Research is underway on services and systems that provide real-time alerts for suffocating gases and potentially explosive materials, but currently smart bend type services are lacking. This study supports real-time identification of explosion hazards due to static electricity in the workplace and immediate elimination of accident occurrence factors, real-time monitoring of worker status and workplace hazards (oxygen, hazardous chemical concentration), and immediate warning and data in case of danger. We propose a method of establishing an accident prevention system through analysis. In this way, various accidents that may occur in industrial sites are monitored using IoT-based intelligent sensor nodes, wireless network technology, data processing middleware, and integrated control system, and real-time risk information at the industrial sites is prevented and accidents are prevented. By supporting a safe working environment, the company can significantly reduce costs compared to post-procurement costs.

A Case Study on the Risk Analysis for the Installation of Measurement Error Verification Facility in Hydrogen Refueling Station (수소 충전소 계량오차 검증 설비 설치를 위한 위험성 분석 사례 연구)

  • Hwayoung, Lee;Hyeonwoo, Jang;Minkyung, Lee;Jeonghwan, Kim;Jaehun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.30-36
    • /
    • 2022
  • In commercial transactions of energy sources using hydrogen charging stations, high-accuracy flow meters are needed to prevent accidents such as overcharging due to inaccurate measurements and to ensure transparency in hydrogen commercial transactions through accurate measurements. This research developed a Corioli-type flowmeter prototype and conducted a risk assessment to prevent accidents during a process change comparison experiment for existing charging stations to verify the measurement performance. A process change section was defined for the installation of measurement facilities for empirical experiments and HAZOP was conducted. In addition, JSA was also conducted to secure the safety of experimenters, such as preventing valve mis-opening during empirical experiments. Measures were established to improve the risk factors derived through HAZOP, and work procedures were established to minimize human errors and ensure the safety of workers through JSA. The design change and system manufacturing for the installation of the metering system were completed by reflecting the risk assessment results, and safety could be confirmed through the performance comparison test of the developed meter prototype. The developed prototype flow meter showed a total of 30 flow measurements under the operating conditions of 70 MPa, and the average error was -1.58% to 3.96%. Such a metering error was analyzed to have the same performance as a flow meter installed and operated for commercial use.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

BLE multi-sensor system for hazardous gas accident prevention (유해가스 사고 예방을 위한 다중센서 BLE 시스템)

  • Nam, Si-Byung;LIM, Su-il;Lee, Chang-Dae;Kim, Jong-Duk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.185-186
    • /
    • 2016
  • 안전사고 발생 위험요소가 산재한 사업장 내에서의 이상 징후를 파악할 수 있는 안전관리 시스템의 구축이 필요하다. 또한 사람이 직접 안전관리를 하는 것이 어려운 장소와 사업장 환경의 변화가 중요한 경우까지 고려하고, 실시간으로 정보를 관리하고 대처할 수 있는 방법이 요구된다. 본 연구에서는 유해가스 누출에 열악한 작업환경에서 인명보호 및 안전사고 예방을 위한 작업자 중심 사고 예방을 위한 다중센서 BLE 디바이스개발과 스마트폰 서비스를 연계방법에 대한 시스템을 제안한다. 제안된 시스템은 AQ, AP, Motion, SmartPhone App, Server로 구성하였다.

  • PDF

A Study on Performance Shaping Factors of Human Error in Toxic Gas Facilities (독성가스시설의 인적오류 수행영향인자에 관한 연구)

  • Kim, Youngran;Jang, Seo-Il;Shin, Dongil;Kim, Tae-Ok;Park, Kyoshik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.68-75
    • /
    • 2014
  • It is necessary to control and evaluate human factors to reduce economic loss by major accident in toxic gas facilities. Conventional works to evaluate hazards have been focused on mechanical and systematic failure, while only a little works have been studied on managing human errors. In this work, a classification system of performance shaping factor (PSF) was suggested to consist human error in managing accident in the toxic gas facilities. Four types of PSFs (human, system, task characteristics, and task environment) were collected, reviewed, and analyzed to be categorized selected according their characteristics of situational, task, and environmental parameters. The PSFs were further modified to set up PSF systems adequate to evaluate human error, and the proposed system to consist PSFs to evaluate human error was further studied through accident analysis in toxic gas facilities.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.

Development of a Prototype Equipment for Road Stripe Removing Using High Pressure Water-Jet (워터젯을 이용한 노면표시 제거장비의 프로토타입 개발)

  • Kim, Kyoon-Tai;Han, Jae-Goo;Kwon, Soon-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.5
    • /
    • pp.149-158
    • /
    • 2006
  • Current removing process is labor intensive and time consuming, employing a conventional grinding type manual machine. This manual tasks trigger various dangers such as unexpected traffic accidents or explosions of propane gas used for finalizing removing process, leading to health damage and environment pollution by dusts and noxious gases. Accordingly, it is necessity for the development of new alternative equipment. In this paper, we have developed a prototype equipment for road stripe removing made up with a high-pressure water-jet system as a mobile type system. The following shows the results. First, an analysis of the current road stripe removal process showed that it can be divided into a) preparation, b) removal and c) ground finishing. It also showed that the b) removal process requires equipment which can cover the whole process. Second, the study compared between the productivity of the developed equipment and conventional methods, and it obtained 280% productivity improvement compared to the conventional equipment.

Design of Integrated Safery System for Sealed Places (밀폐된 공간을 위한 통합안전시스템의 설계)

  • Jeong, Min-Seung;Lee, Chang-Shin;Cho, Woo-Hyeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.97-102
    • /
    • 2019
  • Disaster accidents at industrial sites have been increasing every year. In shipyards there are countless enclosed spaces causing issues like harmful-toxic gases stuck in those sealed areas. And due to such special and complicated structures of the working places with many layers of walls separating each other, there exist more issues of communication with workers trapped inside when accidents happen. Under this circumstance there must be a huge difficulty to evacuate or rescue the workers in case of any disaster. Therefore, in this paper, We would like to introduce the "integrated safety system" to more effectively deal with the problems and prevent such disasters in tough working environments. The suggested integrated safety system can prevent accidents in advance because it can control the data on the location of the workers in real time and the numerical values such as gas, oxygen, and carbon dioxide generated in the workplace in real time.

A Study on the Strength Analysis of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 강도안전성에 관한 연구)

  • Kim, Han-Goo;Shim, Jong-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, the strength analysis has been presented for the stress and strain by using the finite element method for various shell models of the helmets. The advanced helmet that would provide head protection without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and workability of the workers. We need a safe, comfortable and light weight of the helmet shell structure. Thus, the helmets had to stand up to the most rigorous conditions encountered for the fire and gas explosion. The FEM computed results show that when the impulsive force is applied on the summit area of a helmet shell structure, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the summit of the helmet shell. Thus, the summit area of the helmet shell should be supported by a bead frame and increased thickness of the bead. But the overall thickness of the helmet is to decrease for the light weight of a helmet.

  • PDF