• Title/Summary/Keyword: 가스쿨러

Search Result 33, Processing Time 0.02 seconds

Study on Cooling Performance Characteristics of Air Conditioning System Using R744 for a Passenger Vehicle (이산화탄소를 적용한 승용자동차 냉방시스템의 성능특성에 관한 연구)

  • Lee, Ho-Seong;Cho, Chung-Won;Won, Jong-Phil;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5457-5463
    • /
    • 2011
  • The objective of this study is to investigate cooling performance characteristics of mobile air conditioning system using R744 as an alternative of R-134a. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a passenger vehicle, the developed air conditioning system using R744 was applied in a real passenger vehicle and tested under various operating conditions with the variation of gas-cooler inlet air conditions, evaporator inlet air temperatures and compressor speeds. As a result, cooling capacity and coefficient of performance (COP) of the tested air conditioning system decreased with the rise of the inlet air temperature of the gas cooler but increased with the rise of the inlet air temperature of the evaporator. In addition, cooling capacity and coefficient of performance (COP) increased by 42.2 % with the rise of the compressor speed from 900 rev/min to 1800 rev/min, but it decreased by 55.4%.

A Study on the Performance Improvement in a V8 Type Turbocharged Intercooler D.I. Diesel Engine (V8형 터보차져 인터쿨러 직접분사식 디젤기관의 성능개설에 관한 연구)

  • 석동현;윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.118-127
    • /
    • 2004
  • The purpose of this study is experimentally to analyze that intake port swirl, injection system and turbocharger have an effect on the engine performance and the emission characteristics in a V8 type turbocharged intercooler D.I. diesel engine of the displacement 16.7ι, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbo-charged intercoler in order to increase boost efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5, re-entrant 8.5$^{\circ}$ combustion bowl, nozzle hole diameter ${\Phi}$0.33*3+${\Phi}$0.35*2, nozzle protrusion 3.18mm, injection timing BTDC 12$^{\circ}$CA and turbo charger (compressor 0.6A/R+46Trim, turbine 1.0A/R+57Trim) is the best in the full range of operating in the engine performance and the exhaust characteristics of NO$\_$x/ concentration. Therefore their factors are appropriated as intake system, injection and turbocharger system.

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.