• Title/Summary/Keyword: 가스채널

Search Result 144, Processing Time 0.031 seconds

Theoretioal analysis of the buffer gas effects in a KrF$^*$ formation (KrF$^*$형성의 완충기체 영향에 대한 이론적 해석)

  • 최부연
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.3-8
    • /
    • 1990
  • 방전여기 방식의 KrF 엑사이머 레이저의 컴퓨터 시뮬레이션 프로그램을 개발하여 방전중의 KrF 형성, 탈여기 및 흡수채널에서 완충가스의 영향을 이론적으로 해석하였다. 생성효율은 Ne 완충가스에서 He보다 2.2배 정도 높았으며, KrF의 탈여기는 He과 Ne 완충가스에서 각각 50%, 30% 정도의 비율을 차지하였다. 그러나 흡수 과정에서는 완충가스의 영향이 크지 않은 것을 알 수 있었다.

  • PDF

가스사출성형에서 성형조건에 따른 ABS 성형품의 가스채널의 변화

  • 박태원;한성렬;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.221-221
    • /
    • 2004
  • 플라스틱의 사출성형중 용용 수지에 가스를 주입하는 가스사출성형(Gas Assisted Injection Molding GAIM)에 의해 성형품을 만드는 생산방법은 약 30년 전부터 유럽지역을 중심으로 시작되었다 GAIN의 개발 배경은 발포성형을 대체하기 위한 공법으로 개발되었다. 발포성형은 싱크마크(sink mark) 제거, 치수안정성, 강도보강의 목적으로 사용하는 공법이지만, 가스기포가 표면으로 빠져나오고 표면에 가스 기포가 발생하여 외관부품에 부적당하며, 두께가 5-6mm이하의 성형품에는 적용할 수 없고, 성형시간이 긴 문제점을 가지고 있어 이러한 문제를 보강한 공법을 연구할 결과로 GAIM이 탄생하게 되었다.(중략)

  • PDF

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.

Thermal Analysis of Exhaust Diffuser Cooling Channels for High Altitude Test of Rocket Engine (로켓엔진 고공환경 모사용 디퓨져의 냉각 채널 열 해석)

  • Cho, Kie-Joo;Kim, Yong-Wook;Kan, Sun-Il;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Water cooling ducts are installed in the exhaust diffuser for high altitude tests of rocket engine to protect diffuser from high-temperature combustion gas. The mass flow rate and pressure of cooling water is designed to prevent boiling of cooling water in the ducts. Therefore, the estimation of maximum temperature of duct wall is important parameter in design of cooling system, especially pressure of cooling water. The method for predicting maximum temperatures of duct walls with variation of coolant flow rates was derived theoretically.

Numerical Study on Heat Transfer Characteristic in Combustor Nozzle (추진기관 노즐의 열전달 특성에 관한 수치적 연구)

  • Namkoung, Hyuck-Joon;Han, Poong-Gyoo;Lee, Kyoung-Hoon;Kim, Young-Soo;Jeong, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.275-281
    • /
    • 2007
  • For a cooling performance research of the combustor operated in a extreme environment of a high temperature and high pressure, we accomplished a cooling performance analysis. Generally a heat transfer characteristic in cooling passage is known well experimentally and theoretically, however heat flux in the combustion chamber isn't. In this study, fluid flow combined with heat transfer analysis is accomplished about a combustor nozzle. We tried to analyze the cooling performance with a heat transfer characteristic of a gas and coolant side in the view point of quantity on the mass flow rate to be supplied to the cooling channel. And finally, evaluation on the thermal safety of nozzle wall material was accomplished.

  • PDF

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

Simulation Study on the Performance Characteristics of $CO_2$ microchannel gascooler with Operation Conditions ($CO_2$용 마이크로채널 가스쿨러의 운전조건 변화에 따른 성능특성에 관한 해석적 연구)

  • Shin, Eun-Sung;Bae, Kyung-Jin;Kim, Byeong-Cheol;Cho, Hong-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1090-1095
    • /
    • 2009
  • The purpose of this study is to determine the performance characteristics for the micro-channel gascooler with various operating conditions. The performance of four kind of HX models were analyzed and optimized with the variation of refrigerant inlet temperature, air velocity, outdoor temperature. As a result, Model B showed the maximum capacity and high performance could be maintained for wide operating conditions. Beside, the micro-channel heat exchanger could be appled to $CO_2$ system appropriately because of a small pressure drop and high heat transfer rate.

  • PDF

Numerical Study for Configuration Design in the Exhaust Gas Cooling System (배출가스 냉각장치 형상설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.7-12
    • /
    • 2016
  • This paper deals with a parametric study on cooling channel configurations to enhance the cooling effect. As a cooling effect has been increased, the exhaust gas by the plant from a manufacture is becoming deceased. To solve this problem, the design of a efficient cooling system is needed. In this paper, the cooling channel was analyzed to improve the cooling performance. The heat transfer rates depending on the number of baffle and the heiht of fin were obtained by using numerical simulation method. Three-dimensional Reynolds-averaged Naiver-Stokes equations were used to estimate flow and heat transfer in cooling channel, and the $k-{\varepsilon}$ model for turbulence closure was employed.

Numerical Study of the Cooling Channel of the Preburner for a Small Liquid Rocket Engine (소형 액체로켓엔진용 예연소기 냉각채널 유동해석)

  • Moon, In-Sang;Shin, Kang-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.21-24
    • /
    • 2010
  • The cooling channel of the preburner for staged combustion engines was studied. The combustion pressure of the researched preburner is about 210 bar which is very high compared with the engines of the Korean Launch Vechicle and 30 ton class liquid rocket engines developed as a pre-research program. Also, the combustion is an oxygen rich process unlike the gas generators of open cycle kerosene engines. Thus the cooling process is very important to make the preburner stable. Many configurations for the preburner were developed and numerically analyzed. As a result, the pressure loss could be reached below the target.

  • PDF

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.