• Title/Summary/Keyword: 가스누출확산

Search Result 72, Processing Time 0.022 seconds

A Numerical Study of Building Orientation Effects on Evacuation Standard in Case of Toxic Gas Leakage (독성 가스 누출 시 건물 방향이 대피 기준에 미치는 영향에 관한 수치 해석 연구)

  • Seungbum Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.12-18
    • /
    • 2023
  • The effective evacuation strategy according to the accident scenario is crucial to minimize human casualties in the event of toxic gas leak accidents. In this study, the effect of the direction of a building and the location of an industrial complex on the increase in indoor concentration and outdoor diffusion was examined under the same leakage conditions, and effective evacuation criteria were established. In addition, the guidelines for building directions were suggested when constructing buildings that would mitigate human damage caused by chemical accidents. Three scenarios where buildings faced the front, side, and rear of the leakage direction were investigated through CFD simulations. The results revealed that when the building faced the industrial complex, both indoor and outdoor average gas concentrations increased significantly, reaching up to 120 times higher than the other two orientations. Moreover, the indoor space was filled with toxic gas substances more than twice in the same time due to the rapid increase of indoor concentration rate. In cases where the building's windows were positioned at the front, toxic gas stagnation occurred around the building due to pressure differences and reduced flow velocities. Based on our findings, the implementation of these guidelines will contribute to safeguarding residents by minimizing exposure to toxic gas during chemical accidents.

A Study on the Improvement of Safety of Unloading Site by Comparison of Hydrogen Fluoride Leakage Accident (불화수소 누출사고 비교를 통한 하역작업장의 안전성 향상방안에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.32-38
    • /
    • 2018
  • The purpose of this study is to assess quantitatively the amount of leaks and the extent of dispersion in case of a leak at a hydrogen fluoride tank container unloading station, and to suggest a safety improvement plan to prevent recurrence of similar accidents. In 2012, Company H leaks 8 tonnes of tank containers with a maximum storage capacity of 18 Ton, causing it to become a social issue. As a result of calculation using Gaussian plume model, the concentration was estimated to be more than 20ppm from the leak point to 1,321 m radius. The leakage of hydrogen fluoride from the company R in 2014 was estimated to be 11.02 kg, of which 2.9 kg was treated by the scrubber. As a result of calculation using Gaussian plum model, the damage range with a concentration of 20ppm or more from the leak source was estimated to be 69 m in radius. As a result of comparing the above two accidents, it was found that the leakage amount was about 987 times different and the damaged site was more than 19 times different. Therefore, it was concluded that it was necessary to control the wearing of the protective equipment, the enclosure of the unloading site, the installation of the scrubber, and the emergency training to avoid the accidental leakage of a hydrogen fluoride from the unloading site.

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

Modeling of Damage Effects Caused by Ammonia Leakage Accidents in Combined Cycle Power Plant (복합화력발전소 내 암모니아 누출 사고에 의한 피해영향 모델링)

  • Eun-Seong Go;Kyeong-Sik Park;Dong-Min Kim;Young-Tai Noh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • This study focuses on modeling the impact of ammonia leakage from the storage tank in a combined cycle power plant's flue gas denitrification facility. It employs accident impact assessments and diffusion models to determine the optimal scenarios for ammonia storage tank leakage accidents. The study considers the operating conditions of variables as standard conditions for predicting the extent of damage. The Taean combined cycle power plant is chosen as the target area, taking into account seasonal factors such as temperature, humidity, wind speed, atmospheric stability, and wind direction. By utilizing a Gaussian diffusion model, the concentration of ammonia gas at various locations is estimated to assess the potential extent of external damage resulting from a leak. The study reveals that in conditions of high temperature and stable atmosphere within the specified range, lower wind speeds contribute to increased damage to the human body due to ammonia diffusion.

A Study on the Quantitative Process Facility Standards that Require H2S Toxic Gas Detectors and Location Selection for Emergency Safety (H2S 독성가스감지기가 필요한 정량적 공정설비 기준 및 비상시 안전을 위한 위치선정 방안에 대한 연구)

  • Choi, Jae-Young;Kwon, Jung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Design techniques for minimizing the damage caused by leakage of $H_2S$ gas, contained in natural gas and petroleum, have been widely studied abroad in chemical plants that purify and process natural gas and petroleum. However, there is no domestic engineering practice and regulation of $H_2S$. In accordance with the circumstances, this study proposes the quantitative criteria of process equipment to install $H_2S$ toxic gas detector as 500 ppm and explains the valid basis. The $H_2S$ gas dispersion radius up to IDLH 100 ppm is calculated by ALOHA under previous $H_2S$ gas leak accident scenario. The weather conditions of modeling include the conditions of Ulsan, Yeosu and Daesan, the three major petrochemical complexes in Korea. The long radius up to 100 ppm was derived in order of Ulsan, Daesan, Yeosu. For emergency safety the dispersion radius up to 100 ppm of the $H_2S$ gas obtained in this study should be extended to apply the additional $H_2S$ toxic gas detector, and local climate conditions should be considered.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

CNG 충전소의 누출$\cdot$확산에 대한 위험성 평가

  • 이동춘;유상빈;이수경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.137-140
    • /
    • 1998
  • 세계적으로 산업 각 분야에서 석유 소비가 증가하면서, 석유 의존도가 날로 심화되고 있다. 특히 우리나라는 원유 전량을 수입에 의존하고 있는 실정으로 수송분야의 경우 석유 의존도가 절대적으로 높아 이를 줄이기 위해서는 대체 연료차량 개발이 필요하다 하겠다. 또한 자동차 배출가스로 인한 대기 오염이 심화되면서 청정 연료 차량 개발 필요성 또한 시급히 해결해야 할 과제로 대두되고 있다. 이를 위해 CNG 차량에 대한 검토가 적극적으로 이루어지고 있으며 차량에 공급할 연료를 위한 충전소 시스템에 대한 개발연구가 한창 진행 중에 있다. (중략)

  • PDF

Distribution of Hyperbaric Oxygen Chamber for Noxious Gas Disaster in Korea (유독가스 발생 재난을 대비한 국내 고압산소기의 배치)

  • Wang, Soon-Joo;Kang, Pooreun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.381-382
    • /
    • 2022
  • 국내에서 1980년대까지 연탄을 에너지로 많이 사용하면서 일산화탄소 중독이 빈번하여 고압산소치료가 활용되다가 이후 연탄 사용의 감소로 고압산소치료기가 대부분 활용되지 못하고 폐기되는 경우도 많았다. 이후 세월호 사고에서의 잠수사들에 대한 고압산소치료 적용, 가스누출이나 번개탄을 활용한 자살시도가 빈번해지며 고압산소치료기를 보유하고 있는 기관이 부족해 적절한 치료를 제 때 받지 못하여 고압산소치료기의 필요성이 되두되었다. 국내에서는 2021년 기준으로 한해 36,266 건의 화재가 발생하고 2020년에 365명이 화재로 사망하며, 화재로 인한 손상은 1,917건이었는데. 화재 시 여러 유독가스를 흡입하게 되고, 이에 따라 고압산소치료가 필수적으로 진행되어야 한다. 유해화학물질 사고, 대규모 오염, 다양한 교통수단에서의 대형 사고, 건축물 붕괴 사고 및 대규모 지진, 화산폭발 같은 자연재해 시에도 가스 중독이 발생하며, 이는 고압산소치료가 필요하게 된다. 따라서 다양한 종류의 재난에서 발생하는 유독가스 피해자에게 고압산소치료는 필수적이나 본 연구에 의하면 국내에는 고압산소치료챔버의 숫자와 동시에 고압산소치료로 수용할 수 있는 환자수에도 한계가 있고 그 분포의 불균형도 존재하고 있어 재난 시 인명 피해 감소의 기반 장비, 시설로서 고압산소챔버의 균형있는 확산, 적용이 시급한 실정이다. 다행히 최근 전국적으로 고압산소챔버가 증가하는 추세에 있어 그 현황과 배치 상황을 조사하여 이를 통하여 고압산소챔버가 필요한 유독가스 발행 재난에 대비할 수 있는 역량이 증가하고 있다.

  • PDF

The Hazard Assessment of Release and Dispersion of CNG Service Station (CNG 충전소의 누출$\cdot$확산에 대한 위험성 평가)

  • Choi Jong-Woon;Lee Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.53-58
    • /
    • 2000
  • It was carried out consequence analysis(CA) of CNG (compressed natural gas) service station and we compared the results of CA of CNG service station with LPG service station which was installed by high Pressure gas law. The results of CA were that distance of CNG LFL was 1.5 times than the length of LPG LFL. Thermal radiation effect about CNG may not be showed damage of process facilities, but in the case of LPG, it was enough to have an large damage effect on a downtown. The thermal radiation of 37.5 $kw/m^2$ extended 12.6 m. Also, in the case of 12.5 $kw/m^2$ which was able to burn wood, the radiation effect of LPG is 3 times than CNG.

  • PDF

Safety Analysis of Potential Hazards at Hydrogen Refueling Station (수소충전소 잠재적 위험에 대한 안전성해석)

  • Park, Woo-Il;Kim, Dong-Hwan;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • This study was conducted using FLACS, a specialized gas accident analysis program. Hydrogen refueling stations subject of safety analysis, consist of compression facilities, storage tanks, and hydrogen piping. The safety analysis of potential risk factors was conducted after reflecting the design specifications of major facilities and components, environmental conditions around hydrogen refueling stations, etc. As of 2021, about 70 refueling stations in Korea are available, and 1,200 are scheduled to be introduced in the next 2040. To prepare for possible accidents caused by potential hazards for the safe distribution of hydrogen refueling stations, we intend to derive hydrogen leakage diffusion scenarios and review their safety.