• Title/Summary/Keyword: 가스냉각기의 설계

Search Result 81, Processing Time 0.026 seconds

A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials (일방향 응고 재료의 결정립 성장 방향 섭동이 고압터빈 노즐 저주기 피로 수명에 미치는 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.653-658
    • /
    • 2016
  • High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

Trend Evaluation of Self-sustaining, High-efficiency Corrosion Control Technology for Large-scale Pipelines Delivering Natural Gas by Analyzing Patent Data (특허데이터 분석을 통한 천연가스 공급용 대규모 파이프라인을 위한 자립형 고효율 부식 방지 기술의 동향평가)

  • Lee, Jong-Won;Ji, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.730-736
    • /
    • 2019
  • The demand for natural gas, which is considered an environmentally friendly energy source, is increasing, and at the same time, the market share of large pipelines for natural gas supply is increasing continuously. On the other hand, the corrosion of such large pipelines reduces the efficiency of natural gas transportation. Therefore, this study aims to establish a strategy for securing the patent rights of related technologies through quantitative analysis of patents on energy-independent high-efficiency corrosion prevention technology for large-scale pipelines for natural gas supply. In this patent technology trend study, Korean, US, Japanese, and European patents filed, published, and registered by June 2018 were analyzed, and a technical classification system and classification criteria were prepared through expert discussion. To use fuel cells as an external power source to prevent the corrosion of natural gas large-scale pipelines, it is believed that rights can be claimed using an energy control system and methods having 1) branch structures of pipeline and facility designs (decompressor/compressor/heat exchanger) and 2) decompression/preheating and pressurization/cooling technology of high pressure natural gas.

Development of the Pulse Tube Cryocooler for Infrared Detector (적외선 검출기용 맥동관 극저온 냉동기 기술개발)

  • Yeom, Hankil;Park, Seoung-Je;Hong, Hong-Ju;Ko, Junseok;In, Sehwan;Kim, Hyo-Bong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Most of the Stirling cryocoolers used for infrared detector cooling in domestic is imported. Because the cooler has a high price, short life and poor durability, demand for the coolers continues steadily. However, the cooler is highly related to defense and space technology, technology transfer or co-development with the countries having experties in cooler design is very limited. The pulse tube cooler to be developed in this study is such that the mechanical piston in low temperature actuating part is replaced by the gas piston and linear compressor is adopted, which results in low vibration, long life and better durability. It is expected that development of the pulse tube cooler will not only improve our technology to the level of advanced countries, but also enhance the skills in designing and manufacturing of the infrared detector.

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF

Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger (경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Jeon, Min-Ju;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

A Study on the LCC Analysis of an Office Building HVAC System (오피스빌딩 냉난방시스템의 수명주기비용 분석에 관한 연구 : 흡수식 냉온수 유닛의 설치 유형을 중심으로 한 사례연구)

  • Park, Moon-Sun;Shin, Hyeong-Sik;Kim, Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.3 s.31
    • /
    • pp.112-121
    • /
    • 2006
  • The purpose of this study is to execute economical analysis for two types of office building HVAC system using LCC technique : single vs, separated HVAC(equal partition installation, unequal partition installation) system. The research method of this study includes the case analysis and questionnaire surveys. The results of this study are as follows: (1) LCCs of 3 types of HVAC system are estimated and the most economical one is investigated as single HVAC system, (2) In this case study, the single HVAC system was investigated as 34% lower in LCC during 15 years per $100m^2$ compared to equal partition installation, as 41% compared to unequal partition installation.

Mid-loop 운전중 RHR 기능 상실사고시 최대압력 및 보조급수 공급 여유시간 분석

  • 김원석;정영종;장원표
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.473-480
    • /
    • 1996
  • 영광 3/4호기 mid-loop 운전중 잔열제거(RHR) 기능 상실사고시 열수력적 현상을 최적 전산코드인 CATHARE2를 이용하여 해석하였다. 이러한 사고시 열수력적 현상은 일,이차측 냉각재 방출유로와 계통내 비응축성 가스의 거동에 의해 크게 영향을 받는다. 본 연구에서는 2개의 경우를 모의하였는데, 하나는 계통내 방출유로가 있는 경우이며 다른 하나는 방출유로가 없는 경우를 계산하였다. 이 때 사용된 가정은 다음과 같다. (가) 계통은 부분충수 운전 상태로 상부에 비응축성 가스나 증기로 가득 차 있다. (나) 증기발생기는 1대만이 이용 가능하고 이차측은 습식보관 상태이며, 보조급수는 공급되지 않고 이차측 압력은 대기압 상태이다 (다) 사고는 원자로 정지후 2일후 발생한다. 이와같은 조건하에서 사고시 계통 최대압력은 방출유로가 있는 경우 사고후 6,000 초에 0.27 MPa이며, 방출유로를 통한 유량은 총 2.4 kg/s이다. 이 방출유량을 외삽하여 계통수위가 고온관 바닦까지 도달하는데 걸린 시간은 사고후 약 5.67시간이다. 증기발생기 U-튜브를 통한 열전달에 의해 이차측 증기 발생으로 이차측 수위가 하락하면 증기발생기 reflux cooling은 제한을 받을 수 있다. 이 경우 이차측 수위가 U-튜브의 active 영역 상부까지 도달하는데 걸리는 시간은 사고후 약 10시간으로 계산되었다. 그러므로 이 경우 보조급수 공급 여유시간보다 노심 노출시간이 더 빨리 도달하여 노심을 손상시킨다. 사고시 수위지시계는 계통감압에 큰 영향을 주지 못하기 때문에 가능한 빨리 닫아 계통 inventory를 유지하는 것이 이차측 보조급수공급보다 우선한다.합한 설계방안으로 분석되었다.크다는 단점이 있다.TEX>$_2$O$_3$ 흡착제 제조시 TiO$_2$ 함량에 따른 Co$^{2+}$ 흡착량과 25$0^{\circ}C$의 고온에서 ZrO$_2$$Al_2$O$_3$의 표면에 생성된 코발트 화합물을 XPS와 EPMA로 부터 확인하였다.인을 명시적으로 설명할 수 있다. 둘째, 오류의 시발점을 정확히 포착하여 동기가 분명한 수정대책을 강구할 수 있다. 셋째, 음운 과 정의 분석 모델은 새로운 언어 학습시에 관련된 언어 상호간의 구조적 마찰을 설명해 줄 수 있다. 넷째, 불규칙적이며 종잡기 힘들고 단편적인 것으로만 보이던 중간언어도 일정한 체계 속에서 변화한다는 사실을 알 수 있다. 다섯째, 종전의 오류 분석에서는 지나치게 모국어의 영향만 강조하고 다른 요인들에 대해서는 다분히 추상적인 언급으로 끝났지만 이 분석을 통 해서 배경어, 목표어, 특히 중간규칙의 역할이 괄목할 만한 것임을 가시적으로 관찰할 수 있 다. 이와 같은 오류분석 방법은 학습자의 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\

  • PDF

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.