• Title/Summary/Keyword: 가수

Search Result 2,878, Processing Time 0.034 seconds

Purification of Bacillus sp. β-Mannanase and Separation of Xanthan Gum Hydrolysate by Chromatography Methods (Bacillus sp. 유래 β-Mannanase의 정제 및 Chromatography에 의한 Xanthan Gum 가수분해물의 분리)

  • 박귀근
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.562-566
    • /
    • 2003
  • A $\beta$-mannanase of Bacillus sp. was purified by DEAE Sephacel ion exchange column chromatography. The specific activity of the purified enzyme was 17.41 units/mg protein, representing an 84.74-folds purification of the original crude extract. For the separation of two types of hydrolysates by the action of purified $\beta$-mannanase, carbon column chromatography, sephadex G-25 column chromatography and thin layer chromatography were accomplished. Main hydrolysates were D.P value 5 and 7 containing of low D.P values. By the method of FACE (Fluorophore Assisted Carbohydrate Electrophoresis), two types of hydrolysates were identified to homo type.

Optimal conditions of enzymatic hydrolysis for producing anti-inflammatory peptides from sandfish (Arctoscopus japonicus) hydrolysate (도루묵 가수분해물 유래 항염증 펩타이드 제조를 위한 효소 가수분해 최적 조건)

  • Jang, Hye Lim;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.203-208
    • /
    • 2018
  • In this study, the hydrolysis conditions for the production of anti-inflammatory peptides from meat and roe hydrolysates of sandfish (Arctoscopus japonicus) were determined by measuring the nitric oxide (NO) scavenging enzymatic activity, experimental pH, temperature, enzyme concentration, and hydrolysis time. The optimal conditions determined when using meat hydrolysate were a pH value of 5.0, at a temperature of $30^{\circ}C$, 1% enzyme concentration, and 4 h hydrolysis time. The optimal conditions when using roe hydrolysate were a pH of 5.0, a temperature of $70^{\circ}C$, enzyme concentration of 3%, and hydrolysis time of 3 h. The NO scavenging activities of meat and roe hydrolysate were determined to be 18.94 and 19.81%, respectively. In summary, this study determined the optimum enzymatic hydrolysis conditions for the production of anti-inflammatory peptides from sandfish.

Optimization of Enzymatic Treatment for the Production of Hydrolyzed Vegetable Protein (가수분해 식물성 단백질의 효소적 생산을 위한 효소 반응 시스템의 최적화)

  • Chae, Hee-Jeong;In, Man-Jin;Kim, Min-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1125-1130
    • /
    • 1997
  • The effects of enzyme combination, pH, acid washing and enzyme treatment sequence were investigated in the hydrolysis of soy protein. Comparing Alcalase vs. Neutrase/Alcalase, it appeared that Neutrase/Alcalase was more efficient than Alcalase alone, as the highest degree of hydrolysis (DH) was seen in Neutrase/Alcalase. A surprisingly high DH (more than 60%) was observed with Flavourzyme in the second hydrolysis. The separation of insolubles from the first hydrolysis had little effect on the second hydrolysis. When the washing water from the first hydrolysis was reused in the next hydrolysis, the DH and protein recovery were increased. The addition of calcium ion showed not so much positive effects by the stabilization of Neutrase on the Protein hydrolysis. The use of carbohydrase and repeated acid washing gave positive effects on DH. The simultaneous treatment using endoprotease and exoprotease with pH adjustment improved DH significantly.

  • PDF

Biological Compounds Extracted from Codium fragile by Enzymatic Hydrolysis and Their Biological Activities (효소적 가수분해를 이용한 청각으로부터 생리활성 물질의 추출 및 가수분해물의 생리활성)

  • Lee, Ka-Hwa;Senevirathne, Mahinda;Ahn, Chang-Bum;Je, Jae-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.953-959
    • /
    • 2010
  • We extracted bioactive materials from Codium fragile by enzymatic hydrolysis using four different proteases (Alcalase, Flavourzyme, Neutrase, and Protamex) and seven different carbohydrases (amyloglucosidase (AMG), Celluclast, Dextrozyme, Maltogenase, Promozyme, Termamyl, and Viscozyme), and evaluated their biological activities such as antioxidant, anti-acetylcholinesterase (AChE), and anti-inflammatory effects. All enzymatic hydrolysates showed good DPPH radical scavenging capacities, in particular, Flavourzyme and Promozyme hydrolysates possessed the highest activity. The two hydrolysates also exhibited strong hydrogen peroxide scavenging activity, $Fe^{2+}$ chelating activity, and reducing power in a dose-dependent manner. Furthermore, the two hydrolysates effectively protected DNA damage induced by hydroxyl radical by measuring the conversion of supercoiled DNA to the open circular DNA. All enzymatic hydrolysates also showed high anti-AChE inhibitory activities in a dose-dependent manner, and did not showed any significant cytotoxicity on RAW264.7 cells (p<0.05). In addition, the enzymatic hydrolysates significantly (p<0.05) inhibited lipopolysaccharide induced-nitric oxide production on RAW264.7 cells. These results suggest that the enzymatic extracts from Codium fragile would be good source as an ingredient of functional foods.

Effect of the Hydrolysate of Pigs Hoof on Plant Growth and Physico-chemical Properties (Pigs hoof 가수분해물의 이화학성 및 작물 생육에 미치는 효과)

  • Han, Sang-Gyun;Cho, Chun-Hwi;Jeon, Han-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.200-205
    • /
    • 2011
  • This study was conducted to find the physico-chemical properties and the amino acid content of the pigs hoof hydrolysate, keratin protein and to investigate its fertilizer effect on the growth of crops. The keratin proteins such as pigs hoof were alkali-hydrolyzed to produce the hydrolysates. The chemical properties of the hydrolysate of pigs hoof was 6~7 of pH and $10{\sim}15dS\;m^{-1}$ of EC. Total amino acid contents released from the pigs hoof were 10.18%, respectively. The pot experiment was carried out for the cultivation of lettuce. The treatment design of these pot cultivation was composed of Control (compost + NPK), PHH-0.5, PHH-1.0, PHH-2.0 (${\times}2,000$ ; 1,000 ; 500 diluted solution of pig hoof hydrolysate). After lettuce cultivation, the pH values in all treatment soils were decreased than those in initial soils, and the exchangeable cation value was higher than that of control. In all PHH treatments, lettuce growth was better in the leaf length by 6~16% and the leaf width by 4~15% than in control. Therefore, the PHH solutions manufactured by hydrolysis process had plenty of amino acids, and among them PHH had the most abundant nutrients and amino acids with highest growth and yield effect on lettuce.

Enzymatic preparation and antioxidant activities of protein hydrolysates from Gryllus bimaculatus (쌍별귀뚜라미 단백가수분해물의 제조 및 항산화 활성)

  • Cho, Hye-Rin;Lee, Yoo-Jung;Hong, Ji-Eun;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.473-479
    • /
    • 2019
  • Gryllus bimaculatus (GB) has recently been registered as a food variety in Korea. In the present study, we prepared protein hydrolysates from GB and evaluated their antioxidant capacity. Protein hydrolysates were prepared from dried GB using enzymatic hydrolysis using five different proteases, and protein hydrolysates showing high hydrolysis value (alcalase, flavourzyme, and neutrase) were separated further into fractions ${\leq}3kDa$ and then lyophilized. Based on $RC_{50}$ values of hydrolysates (${\leq}3kDa$) obtained from four different antioxidant analyses, the flavourzyme hydrolysates showed relatively high levels of antioxidant capacity among the three hydrolysates, and in particular, it showed considerably strong antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The flavourzyme hydrolysate also significantly inhibited peroxidation of linoleic acid. These results suggest that protein hydrolysates from GB represent potential sources of natural antioxidants. Our current studies are focused on identification of active peptides from the flavourzyme hydrolysate.

Bitterness and Solubility of Soy Protein, Casein, Gluten, and Gelatin Hydrolysates Treated with Various Enzymes (효소종류에 따른 대두단백, 카제인, 글루텐, 젤라틴 단백질 가수분해물의 쓴맛과 용해도 특성)

  • Kim, Mi-Ryung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.587-594
    • /
    • 2010
  • To develop commercially available food protein hydrolysates, the effects of different types of enzymes and substrates on bitterness and solubility of partially hydrolyzed food proteins were investigated. Four types of proteins (casein, isolated soy protein (ISP), wheat gluten, and gelatin) and five types of proteolytic enzymes (a microbial alkaline protease (alcalase), a microbial neutral protease (neutrase), papain, bromelain, trypsin) were used. To profile the pattern of hydrolysis, the degree of hydrolysis (DH) were monitored during 180 min of reaction time by pH-stat method. Casein showed the highest susceptibility to hydrolysis for all five proteases compared to those of ISP, gluten, and gelatin. In addition, the bitter intensity and solubility (nitrogen soluble index, NSI) of each protein hydrolysate were compared at DH 10%. Bitterness and solubility of protein hydrolysates were highly affected by DH and the types of enzymes and substrates. At DH=10%, casein hydrolysate by trypsin, ISP and gluten hydrolysates by either bromelain or neutrase, and gelatin hydrolysates by the five proteases tested in this study were highly soluble and less bitter.

Effect of Enzymatic Hydrolysate of Laver Pyropia on the Dough and Bread Making Properties of Wheat Flour (김 효소 가수분해물 첨가가 밀가루 반죽과 제빵 특성에 미치는 영향)

  • Ryu, Chung-Hee;Koo, Jae-Geun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.467-475
    • /
    • 2015
  • The effects of replacement of wheat flour with laver, Pyropia yezoensis, on the bread making properties and quality characteristics of bread were evaluated. The poor baking performance which arose from dried laver addition could be compensated by using exogenous enzymes (Flavouzyme) and baking aids. Laver hydrolysate was prepared by hydrolyzing laver using Flavouzyme for 9 hrs at $50^{\circ}C$. Doughs made by addition of laver hydrolysate (8% dried laver substitution level) showed excellent baking properties. Moreover, with the addition of glucose oxidase and hydro colloidal HPMC, loaf volume and crumb grain were improved for doughs containing laver hydrolysate. Both of intermediate fermentation and final proof time for doughs containing laver hydrolysate was shorter than that for conventional dough.

Emulsifying Properties of Whey Protein Hydrolysates (유청 단백질 가수분해물의 유화특성)

  • 양희진;이수원
    • Food Science of Animal Resources
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • This experiment was carried out to study changes in solubility and emulsifying properties of whey protein. Whey protein hydrolysates were obtained from tryptic hydrolysis of whey protein concentrate at pH 8.0 and 37$^{\circ}C$ for 6 hours. Emulsifying activity of whey protein hydrolysate was highest at 4 hours of hydroysis and at 5.50% of DH. During hydrolysis of whey protein concentrate with trypsin, ${\alpha}$-lactalbumin was not easily broken down. But ${\beta}$-lactoglobulin was hydrolysed rapidly from the early stage of hydrolysis, producing several low molecular weight peptides, which have to participate in increasing emusifying activity. The solulbility of hydyolysates tended to increase depending on hydrolysis time; however, there was a gradual decrease after 5 hours. The hydrolysate had a minimum solubility near the isoelectric point range (pH 4∼5). The more hydrolysed the whey protein concentrates, the more soluble they are near the pl. They aye also more soluble above pH 6. Emulsifying activity of hydrolysates showed similar results to solubility. Creaming stability gradually increased when hydrolysis increased, increasing rapidly above pH 8 after 4 hours of hydrolysis.

대두단백질 가수분해물의 쓴맛 펩타이드 구조와 특징

  • Lee, Cheol-Ho
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.06a
    • /
    • pp.3-41
    • /
    • 2001
  • 단백질의 부분 가수분해는 산성 음료에서의 용해도 증가, 환자들의 소화력과 알러지 내성의 개선, 다른 기능적 특성의 개발 등을 위하여 식품산업에 널리 이용되고 있다. 그러나 우유 단백질이나 대두 단백질과 같은 몇 가지 단백질들은 가수분해에 의하여 강한 쓴맛을 형성한다, 단백질 가수분해물의 쓴맛에 관한 연구는 1950년대 초에 시작되었으며, 여러 가지 원료로부터 쓴맛물질이 분리되었다. 이들 단백질 가수분해물의 쓴맛 물질은 올리고펩타이드로 알려져 있으며, 펩타이드 분자를 구성하는 소수성 아미노산의 존재와 밀접한 관계가 있는 것으로 보고되고 있다. 본 연구에서는 최근에 발달된 분석기술과 생명공학적 기법으로 E. coli에서 생산한 콩 단백질 단일 subunit를 이용하여 효소적 가수분해물의 분자구조를 확인하고자 하였다. 탈지대두박으로부터 115 glycinin와 E.coli떼서 발현된 proglycinin을 각각 90%, 97%의 정제도로 분리하여 이들 단백질을 trypsin으로 각각 가수분해하였다. 115 glycinin은 효소/기질 비 3%에서 4시간 가수분해에 의해 $14.0{\times}10^{-5}$ M quinine-HCI equivalent의 강한 쓴맛을 나타내었으며, 12%의 가수분해도(DH)를 나타내었다. 대두 단백질의 쓴맛 성분을 확인 위하여 이미 아미노산 서열이 밝혀진 11S glycinin과 proglycinin 가수분해물에서 GP-HPLC, $C_{18}$ RP-HPLC 등을 통하여 쓴맛 peptide들을 분리하였다. 각각의 분획은 다시 21개의 peptide로 분리되어 그 서열이 결정되었으며 이중 RP와 GI는 이미 알려진 쓴맛 dipeptide였고, LAGNQEQE, SAEFG, NALPE, KLHENIAR, GMIYPG 등이 주된 쓴맛 Peptide로 확인되었다. 이들은 11S glycinin의 5개의 subunit 중에서 그 위치가 확인되었다. Proglycinin 가수분해물에서도 11S glycinin과 같은 방법으로 7개의 쓴맛 peptide가 분리되었다. 이들은 $A_{1a}B_{1b}$의 아미노산 서열 중에서 37-42, 103-110, 164-167, 323-327, 367-373의 위치에 분포하고 있었으며, NALKPD, IYPGCPST, SlDT, HNIGQT, NAMFVPH의 서열을 나타내었다. 분리된 쓴맛 peptide 중에서 가장 쓴 두 분회의 peptide를 합성하여 관능 검사한 결과, NALPE는 매우 쓴맛을 내는 peptide로 확인되었다.

  • PDF