• Title/Summary/Keyword: 가솔린

Search Result 798, Processing Time 0.034 seconds

A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures (다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구)

  • Jihyun Son;Gyuhan Bae;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.

Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics (모사 합성 가솔린 제조 및 분무 특성 분석 연구)

  • Jeonghyun Park;Naeun Choi;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

Decomposition of HDPE over HZSM-5 Catalyst Modified with Si, P and Mg for Recycle of Waste Plastics (Si, P, Mg로 개질된 HZSM-5 촉매상에서 폐플라스틱(HDPE) 재활용을 위한 분해반응)

  • Yu, Eui-Yeon;Kim, Sang-Chai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.955-960
    • /
    • 2006
  • Catalytic decomposition over HZSM-5 was carried out in semi-batch reactor to recover gasoline from waste plastics(HDPE). To enhance the liquid yield with a molecule range of gasoline, the properties of catalytic decomposition were investigated over a commercial Si/ZSM-5 catalyst and HZSM-5 catalysts modified with P and Mg. Optimum loadings of P and Mg on HZSM-5 were 0.5 wt% and 2.0 wt%, respectively, based on conversion and liquid yield. $NH_3-TPD$ profile indicated that strong and weak acid sites totally decreased in P loading on HZSM-5 catalyst, strong acid sites moderately decreased and weak acid sites sharply reduced in Mg loading on HZSM-5 catalyst. In the case of Si/ZSM-5 catalyst, all acid sites almost disappeared, subsequently, catalytic decomposition significantly decreased, and little liquid product was produced. When HZSM-5 catalyst was modified with P and Mg, the carbon distribution of liquid product was shifted to lower carbon number and its all components was within a molecular range of gasoline($C_5-C_{11}$). Especially, over Mg(2.0 wt%)/ZSM-5 catalyst, 55.8% of liquid yield with 100% of a molecular range of gasoline, was obtained at $400^{\circ}C$, suggesting it as a promising catalyst for recycle of waste plastics.

Kinetics of the Biofilter Treating Gasoline Vapor (가솔린 휘발가스의 바이오필터 처리에 관한 동력학적 연구)

  • Park, Joon-Seok;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.70-76
    • /
    • 2001
  • Proper design and improvement of the biofiltration process depend upon quantitative understanding of the kinetic behavior in the biofilter. This study was conducted to evaluate kinetics of biofiltration of gasoline vapor. Filling material of the biofilter was compost. Gas inlet concentration ranged from about $300mg/m^3$ to $7,000mg/m^3$. Gas velocities were 6m/hr and 15m/hr, respectively. At 6m/hr gas velocity, about 60% of gasoline TPH below $3,000mg/m^3$ was removed in the lower quarter part of the biofilter. First order kinetics described well the degradation rate of gasoline TPH with high correlation. First order kinetic removal constant at the gas velocity of 6m/hr was higher than that of 15m/hr from about $300mg/m^3$ to $7,000mg/m^3$. When the inlet concentration was over $3,000mg/m^3$, first order kinetic removal constant at the gas velocity of 6m/hr was over twice that at 15m/hr. In order to obtain over 80% of removal efficiency, gasoline vapor should be injected into the biofilter at concentration below about $2,000mg/m^3$, 100cm filling height and the gas velocity of 6m/hr.

  • PDF

Effect of Injection Pressure and Injection Timing on Combustion Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사압과 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 연소특성)

  • Oh, Hee-Chang;Lee, Min-Seok;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.981-987
    • /
    • 2011
  • In this study, single cylinder engine experiment was carried out to investigate combustion characteristics spray guided direct injection spark ignition engine. In the result of engine experiment, it was shown that flammable window of injection timing was existed. The combustion efficiency increased with retarding injection timing, reaching a peak value, subsequent to decrease again. These results were likely due to the effect of ambient pressure on stratified-premixed mixture preparation. 150 bar injection pressure condition and retarded injection timing from the best combustion efficiency injection timing showed the highest IMEP value due to the advanced combustion phase of the maximum combustion efficiency condition. HC emission showed same trend of combustion efficiency, and smoke emission was increased as injection timing was retarded due to the increased locally rich area in the high ambient pressure. NOx emission showed decreasing trend as injection timing was retarded. This is likely due to the maximum in-cylinder temperature was decreased with retarded combustion phase.

환경뉴스

  • Korea Environmental Preservation Association
    • Bulletin of Korea Environmental Preservation Association
    • /
    • v.29 s.367
    • /
    • pp.34-38
    • /
    • 2007
  • PDF