• Title/Summary/Keyword: 가솔린오염

Search Result 59, Processing Time 0.026 seconds

Characterization of MTBE (Methyl Tertiary Butyl Ether) Utilizing Bacteria from the Gasoline Contaminated Soils (유류오염토양에서 분리된 MTBE(Methyl Tertiary Butyl Ether) 이용 균주의 MTBE 분해특성)

  • An, Sangwoo;Lee, Sijin;Park, Jaewoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.43-50
    • /
    • 2010
  • In this study, we have isolated MTBE utilizing bacteria at the gasoline contaminated soil and also MTBE degradation patterns were characterized. The 18 bacterial mono-cultures isolated from enrichment cultures were screened for MTBE degradation. Of the 18 strains, the 3 strains (Flavobacterium, Pseudomonas, and Achromobacter) have shown effective MTBE degradation. Experimental parameters affecting the growth conditions (such as temperature, pH, initial cell mass) were optimized. Experimental parameters such as temperature $30^{\circ}C$, pH 7, and initial cell mass 0.6 g/mL in optimal growth conditions for MTBE degradation. The optimal growth conditions of the isolated stains were temperature $30^{\circ}C$, pH 7, and initial cell mass 0.6 g/mL in our experiment, respectively. The first order degradation coefficients of Achromobacter, Mixed culture, Pseudomonas, and Flavobacterium were 0.072, 0.066, 0.047, and $0.032hr^{-1}$, respectively. and also, it could be expressed as a degradation rate considering cell mass (1.302, 1.019, 0.523, and 0.352 mg/TSS g/hr for each microorganism). Although Achromobacter has shown highest MTBE degradation rate, degradation rate for BTEX was relatively lower than other strains. and Mixed culture and Flavobacterium have shown similar degradation pattern for MTBE and BTEX biodegradation.

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

A Study on Transport Characteristics of MTBE(Methyl Tertiary Butyl Ether) in Soil (MTBE(Methyl Tertiary Butyl Ether)의 토양내 이동특성에 관한 연구)

  • Cho, Ki-Chul;Park, Chang-Woong;Choi, Won-Joon;Kang, Seung-Yub;Hwang, Jong-Hyun;Kim, Youn-Soo;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.190-198
    • /
    • 2008
  • In this stduy, the column experiments were carried out assuming the soil was contaminated by leakage of gasoline containing MTBE from USTs and pipes around gas stations. Then, characteristics of MTBE transport in the soil were investigated using CXTFIT program. The column experiments with different soil properties, moisture content, organic matter content and flow rate were carried out. Some parameters(D, R, $\beta$, $\omega$) used in two-site non-equilibrium adsorption model were obtained from measuring the MTBE concentration in injection-liquid and in effluent and using CXTFIT program. In addition, The characteristics of MTBE transport in the soil was found using BTCs and obtained parameters. Consequently, the advection decreased as the increase of the content of fine particle and organic, while the MTBE transport by advection was enhanced as increasing flow rate and moisture content.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Catalytic Technology for NOx Abatement using Ammonia (암모니아를 환원제로 이용한 NOx 저감 촉매 기술)

  • Park, Soon Hee;Lee, Kwan-Young;Cho, Sung June
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.211-224
    • /
    • 2016
  • Three way catalyst has been used extensively for the exhaust gas treatment for the internal combustion gasoline engine. While, numerous research efforts have been directed to develop various technologies for the abatement of exhaust gas from diesel engine. Diesel engine operating under lean condition produces large amount of NOx and the corresponding catalytic technology employing vanadium supported titania using ammonia has been commercialized for heavy duty vehicle. Recently, the Cu catalyst supported on zeolite has been investigated for NOx abatement using ammonia because of its critical importance for ultra low emission vehicle. The current review shows the recent trend in research and development for zeolite based copper catalysts, which are mainly used as catalysts for selective catalytic reduction using ammonia, are one of the aftertreatment technologies for effectively removing nitrogen oxides from diesel exhaust.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

The Characteristics Study of Vehicle Evaporative Emission and Performance according to the Bio-Fuel Application (바이오 연료 적용에 따른 차량 증발가스 및 성능특성 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Kim, Sin;Park, Cheon-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.874-882
    • /
    • 2017
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotiv e and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward three main issues : evaporative, performance, air pollution. In addition, researcher studied the environment problems of the bio-ethanol, bio-butanol, bio-ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tert iary Butyl Ether) fuel contained in the fuel as octane number improver. The researchers have many dat a about the health effects of ingestion of octane number improver. However, the data support the con clusion that octane number improver is a potential human carcinogen at high doses. Based on the bio-fuel and octane number improver types (bio-ethanol, bio-butanol, bio-ETBE, MTBE), this paper dis cussed the influence of gasoline fuel properties on the evaporative emission characteristics. Also, this p aper assessed the acceleration and power performance of gasoline vehicle for the bio-fuel property. As a result of the experiment, it was found that all the test fuels meet the domestic exhaust gas standards, and as a result of measurement of the vapor pressure of the test fuels, the bio - ethanol : 15 kPa and the biobutanol : 1.6 kPa. thus when manufacturing E3 fuel, Increasing the biobutanol content reduces evaporation gas and vapor pressure. In addition, Similar accelerating and powering performance was shown for the type of biofuel and when bio-butanol and bio-ethanol were compared accelerated perf ormance was improved by about 3.9% and vehicle power by 0.8%.

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Effect of EGR on power and exhaust emissions in diesel engine (디젤엔진의 출력 및 배기가스에 미치는 EGR의 영향)

  • Song, Kyu-keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.870-875
    • /
    • 2015
  • Diesel engines are widely used due to superior power and fuel consumption, however there are many challenges in exhaust gas management. Exhaust gas recirculation (EGR) is the most effective technique for reducing mono-nitrogen oxide (NOx) emissions in a diesel engine, in comparison with other catalytic technologies. In addition, the technology has a number of advantages in terms of economic efficiency and implementation. In this study, the effects on the power and exhaust characteristics of diesel engines equipped with EGR systems were investigated. It was found that as the EGR rate increased, horsepower expressed as IHP and BHP decreased. The net effect of the application of EGR was measured at various engine speeds. EGR technology caused decreases in BHP of around 9% during low engine speed and 3.5% during high engine speed. Additionally, NOx emissions reduced as the EGR rate increased, and increased as engine speed increased. However, smoke emissions increased as the EGR rate increased, and decreased as engine speed increased. The optimum operating conditions and ERG rate to simultaneously achieve minimum NOx and smoke emissions were investigate. It was found that as the EGR rate increased, optimal operating speed for minimal NOx and smoke also increased. Keywords: Diesel engine, Exhaust gas recirculation, Power perfomance, Emission characteristics, NOx, Smoke