Characterization of MTBE (Methyl Tertiary Butyl Ether) Utilizing Bacteria from the Gasoline Contaminated Soils

유류오염토양에서 분리된 MTBE(Methyl Tertiary Butyl Ether) 이용 균주의 MTBE 분해특성

  • 안상우 (한양대학교 건설환경공학과) ;
  • 이시진 (경기대학교 환경에너지시스템공학과) ;
  • 박재우 (한양대학교 건설환경공학과) ;
  • 장순웅 (경기대학교 환경에너지시스템공학과)
  • Received : 2009.12.30
  • Accepted : 2010.03.02
  • Published : 2010.04.01

Abstract

In this study, we have isolated MTBE utilizing bacteria at the gasoline contaminated soil and also MTBE degradation patterns were characterized. The 18 bacterial mono-cultures isolated from enrichment cultures were screened for MTBE degradation. Of the 18 strains, the 3 strains (Flavobacterium, Pseudomonas, and Achromobacter) have shown effective MTBE degradation. Experimental parameters affecting the growth conditions (such as temperature, pH, initial cell mass) were optimized. Experimental parameters such as temperature $30^{\circ}C$, pH 7, and initial cell mass 0.6 g/mL in optimal growth conditions for MTBE degradation. The optimal growth conditions of the isolated stains were temperature $30^{\circ}C$, pH 7, and initial cell mass 0.6 g/mL in our experiment, respectively. The first order degradation coefficients of Achromobacter, Mixed culture, Pseudomonas, and Flavobacterium were 0.072, 0.066, 0.047, and $0.032hr^{-1}$, respectively. and also, it could be expressed as a degradation rate considering cell mass (1.302, 1.019, 0.523, and 0.352 mg/TSS g/hr for each microorganism). Although Achromobacter has shown highest MTBE degradation rate, degradation rate for BTEX was relatively lower than other strains. and Mixed culture and Flavobacterium have shown similar degradation pattern for MTBE and BTEX biodegradation.

본 연구에서는 가솔린으로 오염된 토양에서 MTBE이용 분해균주를 분리하였으며, 분리한 각 균주의 MTBE 생분해특성을 파악하고자 하였다. 오염된 토양 내에서 MTBE 이용 혼합균주 중 총 18균주를 분리한 후, 18균주 중 3개의 균주(Flavobacterium, Pseudomonas, Achromobacter)에서 MTBE의 생분해가 나타났다. MTBE 이용 균주의 최적 생장인자는 배양온도 $30^{\circ}C$, pH 7, 균접종농도는 0.6g/mL로 조사되었다. Achromobacter, 혼합균주, Pseudomonas, 그리고 Flavobacterium의 MTBE 일차 분해계수는 0.072, 0.066, 0.047, $0.032hr^{-1}$로 조사되었다. 그리고 균접종농도를 고려한 MTBE 생분해속도는 1.302, 1.019, 0.523, 0.352mg/TSS g/hr로 관측되었다. MTBE 단독기질로 존재할때에 MTBE분해속도가 가장 높은 Achromobacter는 BTEX와 동시에 존재하였을 경우 다른 균주들에 비하여 낮은 MTBE 분해능을 나타내었다. 또한, MTBE 이용 혼합균주와 Flavobacterium은 MTBE와 BTEX 생분해 특성이 비슷한 것으로 나타났다.

Keywords

References

  1. 김미경, 정란경, 신정남, 백형환 (2004), 주유소 주변 토양의 BTEX 오염 분석에 관한 연구, 한국환경분석학회지, Vol. 7, No. 3, pp. 135-141.
  2. 김현욱, 김혜정, 김태훈, 김태임, 이주연, 김척제, 백현동 (2008), 한국형 육포제조를 위한 원료 돈육의 미생물 분포 및 병원성 미생물의 확인, 한국축산식품학회지, Vol. 28, No. 1, pp. 76-81.
  3. 안상우, 장순웅 (2004), SPME-GC/FID를 이용한 MTBE 및 TBA 분석에 관한 연구, 한국환경분석학회지, Vol. 7, No. 2, pp. 83-89.
  4. 이영근, 장화형, 장유신, 형석원, 정혜영 (2004), Bacillus sp. MS202에 의한 Dinitroaniline계 제초제인 Pendimethalin의 부분환원, 한국환경농학회지, Vol. 23, No. 4, pp. 197-202.
  5. 정경미, 최용수, 홍석원, 이수진, 이상협 (2006), 순수 분리 미생물을 이용한 오염 토양에서의 BTEX 생분해 특성과 미생물 군집변화, 대한환경공학회지, Vol. 28, No. 7, pp. 757-763.
  6. Adnan, A. F. M. and Tan, I. K. P. (2007), Isolation of Lactic Acid Bacteria from Malaysian Foods and Assessment of the Isolates for Industrial Potential, Bioresource Technology, Vol. 98, pp. 1380-1385. https://doi.org/10.1016/j.biortech.2006.05.034
  7. Ahmed, M. and Focht, D. D. (1973), Degradation of PCBS by Two Species of Achromobacter, Canadian Journal of Microbiology, Vol. 19, No. 1, pp. 47-52. https://doi.org/10.1139/m73-007
  8. Arp, H. P. H. and Schmidt, T. C. (2004), Air−Water Transfer of MTBE, Its Degradation Products, and Alternative Fuel Oxygenates: The Role of Temperature, Environmental Science and Technology, Vol. 38, No. 20, pp. 5405-5412. https://doi.org/10.1021/es049286o
  9. Church, C. D., Tratnyek, P. J., Pankow, J. F., Landmeyer, J. E., Baehr, A.L., Thomas, M. A. and Schirmer, M. (1999), Effects of Environmental Conditions on MTBE Degradation in Model Column Aquifers, Proceedings of the Technical Meeting of USGS Toxic Substances Hydrology Program, Vol. 3, Charleston, S. C., pp. 93-101.
  10. Declerck, P., Behets, J., Hoef, V. van and Ollevier, F. (2007), Detection of Legionella spp. and Some of Their Amoeba Hosts in Floating Biofilms from Anthropodenic and Natural Aquatic Environments, Water Research, Vol. 41, pp. 3159-1367. https://doi.org/10.1016/j.watres.2007.04.011
  11. Deeb, R. A., Hu, H. Y., Hanson, J. R., Scow, K. M. and Alverez-Cohen L. (2001), Substrate Interactions in BTEX and MTBE Mixtures by an MTBE Degrading Isolate, Environmental Science and Technology, Vol. 35, pp. 312-317. https://doi.org/10.1021/es001249j
  12. Eweis, J. B., Schroeder, E. D., Chang, D. P. Y. and Scow, K.M. (1998), Biodegradation of MTBE In A Pilot-Scale Biofilter, In G. B. Wickramanayake and R. E. Hinchee, Eds., Natural Attenuation: Chlorinated and Recalcitrant Compounds, Battelle Press, Columbus, Ohio, pp. 341-346.
  13. Fujiwara Y., Kinoshita T., Sato H. and Kojima I. (1984), Biodegradation and Bioconcentration of Alkylethers, Yukagaku, Vol. 33, pp. 111-114.
  14. Hanson, J. R., Ackerman, C. E. and Scow, K. M. (1999), Biodegradation of Methyl tert-Butyl Ether by a Bacterial Pure Culture, Applied and Environmental Microbiology, Vol. 65, No. 11, pp. 4788-4792.
  15. .Lee, E. Y., Jun, Y. S., Cho, K. S. and Ryu, H. W. (2002), Degradation Characteristics of BTEX by Stenotrophomonas Maltophilia T3-c, Journal of the Air & Waste Management Association, Vol. 52, pp. 400-405. https://doi.org/10.1080/10473289.2002.10470796
  16. .Lin, C. W., Cheng, Y. W. and Tsai, S. L. (2007), Multi- Substrate Biodegradation Kinetics of MTBE and BTEX Mixtures by Pseudomonas Aeruginosa, Process Biochemistry, Vol. 42, pp. 1211-1217. https://doi.org/10.1016/j.procbio.2007.05.020
  17. Lu, S. J., Wang, H. Q. and Yao, Z. H. (2006), Isolation and Characterization of Gasoline-degrading Bacteria from Gas Station Leaking-contaminated Soil, Journal of Environmental Science, Vol. 18, No. 5, pp. 969-972. https://doi.org/10.1016/S1001-0742(06)60023-5
  18. Mo, K., Lora, C. O., A. Wanken, E., Javanmardian, Yang, M. X. and Kulpa, C. F. K. (1997), Biodegradation of Methyl t-Butyl Ether by Pure Bacterial Cultures, Applied Microbiology and Biotechnology, Vol. 47, pp. 69-72. https://doi.org/10.1007/s002530050890
  19. Munoz-Castellanos, L. N., Torres-Munoz, J. V., Keer-Rendon, A., Manzanares-Papayanopoulos, L. I. and Nevarez-Moorillon, G. V. (2006), Aerobic Biodegradation of MTBE by Pure Bacterial Cultures Isolated from Contaminated Soil., World Journal of Microbiology and Biotechnology, Vol. 22, pp. 851-855. https://doi.org/10.1007/s11274-005-9114-0
  20. Nsabimana, E., Belan, A. and Bohatier, J. (1999), Analysis at the Genomospecies Level of Microbial Populations Changes in Activated Sluge : the Case of Aeromonas, Water research, Vol. 34, No. 5, pp. 1694-1704.
  21. Pruden A. and Suidan M. (2004), Effect of Benzene, Toluene, Ethylbenezene, and p-Xylene Mixture on Biodegradation of Methyl tert-Butyl Ether (MTBE) and tert-Butyl Alcohol (TBA) by Pure Culture UC1, Biodegradation, Vol. 15, pp. 213-227. https://doi.org/10.1023/B:BIOD.0000042900.29237.f1
  22. Richard, F. J. (1959), A Flexible Growth Function for Empirical Use, Journal of Experimental Botany, Vol. 10, pp. 290-300. https://doi.org/10.1093/jxb/10.2.290
  23. Salanitro, J. P., Diaz, L. A., Williams, M. P. and Wisniewski, H. L. (1994), Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether, Applied and Environmental Microbiology, Vol. 60 pp. 2593-2596.
  24. Sedran, M. A., Pruden, A., Wilson, G. J., Suidan, M. T. and Vensa, A. D. (2002), Effect of BTEX on the Degradation of MTBE and TBA by a Mixed Bacterial Consortium, ASCE Journal of Environmental Engineering, Vol. 128, pp. 830-835. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:9(830)
  25. Smith, C. A., O'Reilly, K. T. and Hyman, M. R. (2003), Characterization of the Initial Reactions during the Cometabolic Oxidation of Methyl tert-Butyl Ether by Propane-Grown Mycobacterium Vaccae JOB5, Applied and Environmental Microbiology, Vol. 69, No. 2, pp. 796-804. https://doi.org/10.1128/AEM.69.2.796-804.2003
  26. Steffan, R. J., McClay, K., Vainberg, S., Condee, C. W. and Zhang, D. (1997), Biodegradation of the Gasoline Oxygenates Methyl tert-Butyl Ether, Ethyl tert-Butyl Ether, and tert-Amyl Methyl Ether by Propane-Oxidizing Bacteria, Applied and Environmental Microbiology, Vol. 63, pp. 4216-4222.
  27. Surez, M. P. and Rifai, H. S. (1999), Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater, Bioremediation Journal, Vol. 3, pp. 337-362. https://doi.org/10.1080/10889869991219433
  28. Tang, Y. W., Han, J., McCormac, A., Li, H. and Stratton, C. W. (2008), Straphyococus Pseudolugnuensis sp. nov., a Pyrrolidonyl Arylamidase/ornithine Decarboxylase-Positive Bacterium Isolated from Blood Cultures, Diagnostic Microbiology and Infectious Disease, Vol. 60, pp. 351-359. https://doi.org/10.1016/j.diagmicrobio.2007.11.005
  29. Pimentel-Gonzalez, D., Revah, S., Campos-Montiel, R., Monroy- Hermosillo, O. and Vernon-Carter, E. J. (2008), A Laboratory Study of the Biodegradation of MTBE Solubilised in Water by a Microbial Consortium Entrapped in a Water-in-Oil-in-Water Double Emulsion, Process Biochemistry, Vol. 43, pp. 1239-1243. https://doi.org/10.1016/j.procbio.2008.07.004