• 제목/요약/키워드: 가속화

Search Result 2,280, Processing Time 0.028 seconds

An Exploratory Study on Consumer Behavior of Digital Banking Deposits: Focusing on Bank Loyal Customers (디지털 뱅킹 정기예금의 소비자 행동 실태에 관한 탐색적 연구 -은행 충성고객을 중심으로-)

  • Inkwan Cho;Soo Kyung Park;Bong Gyou Lee
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.130-145
    • /
    • 2023
  • The digital transformation of finance is accelerating, and digital banking has already become a major banking channel. Banks have traditionally placed importance on CRM(Customer Relationship Management) and have tried to retain their loyal customers, who contribute significantly to the bank, such as long-term transactions, holding accounts with a certain balance or more, and holding loans. In this situation, this study exploratorily analyzed the consumer behavior of digital banking deposits in a major bank of Korea(1,145 samples). Statistical analysis was performed using SPSS. The main findings of the study are summarized as follows. It was found that there were differences of consumer behavior in digital banking deposits by generation, and the MZ generation used digital banking more on holidays than other generations. As a result of analyzing the behavior of existing loyal customers and regular customers of digital banking deposit, there was a significant difference in both the amount and period of the deposit. It was confirmed that the existing loyal customers of the bank also engage in consumer behavior that contributes to the bank in digital banking. In addition, the interaction between the customer type and the date of sign up for the deposit period, which is the goal setting of financial consumers, it was found that there was a significant effect. This study empirically analyzed the consumer behavior of digital banking in a situation where decrease of bank branches and encounters with digital banking. The major concepts of the consumer behavior theory are Loyal Customer, Goal Pursuit, and Habit, which were confirmed in an example of digital banking. The results of this study can suggest practical implications for existing banks and Internet-only banks, including the importance of customer management in digital banking.

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.

The Validity Test of Statistical Matching Simulation Using the Data of Korea Venture Firms and Korea Innovation Survey (벤처기업정밀실태조사와 한국기업혁신조사 데이터를 활용한 통계적 매칭의 타당성 검증)

  • An, Kyungmin;Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.245-271
    • /
    • 2023
  • The change to the data economy requires a new analysis beyond ordinary research in the management field. Data matching refers to a technique or processing method that combines data sets collected from different samples with the same population. In this study, statistical matching was performed using random hotdeck and Mahalanobis distance functions using 2020 Survey of Korea Venture Firms and 2020 Korea Innovation Survey datas. Among the variables used for statistical matching simulation, the industry and the number of workers were set to be completely consistent, and region, business power, listed market, and sales were set as common variables. Simulation verification was confirmed by mean test and kernel density. As a result of the analysis, it was confirmed that statistical matching was appropriate because there was a difference in the average test, but a similar pattern was shown in the kernel density. This result attempted to expand the spectrum of the research method by experimenting with a data matching research methodology that has not been sufficiently attempted in the management field, and suggests implications in terms of data utilization and diversity.

KANO-TOPSIS Model for AI Based New Product Development: Focusing on the Case of Developing Voice Assistant System for Vehicles (KANO-TOPSIS 모델을 이용한 지능형 신제품 개발: 차량용 음성비서 시스템 개발 사례)

  • Yang, Sungmin;Tak, Junhyuk;Kwon, Donghwan;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.287-310
    • /
    • 2022
  • Companies' interest in developing AI-based intelligent new products is increasing. Recently, the main concern of companies is to innovate customer experience and create new values by developing new products through the effective use of Artificial intelligence technology. However, due to the nature of products based on radical technologies such as artificial intelligence, intelligent products differ from existing products and development methods, so it is clear that there is a limitation to applying the existing development methodology as it is. This study proposes a new research method based on KANO-TOPSIS for the successful development of AI-based intelligent new products by using car voice assistants as an example. Using the KANO model, select and evaluate functions that customers think are necessary for new products, and use the TOPSIS method to derives priorities by finding the importance of functions that customers need. For the analysis, major categories such as vehicle condition check and function control elements, driving-related elements, characteristics of voice assistant itself, infotainment elements, and daily life support elements were selected and customer demand attributes were subdivided. As a result of the analysis, high recognition accuracy should be considered as a top priority in the development of car voice assistants. Infotainment elements that provide customized content based on driver's biometric information and usage habits showed lower priorities than expected, while functions related to driver safety such as vehicle condition notification, driving assistance, and security, also showed as the functions that should be developed preferentially. This study is meaningful in that it presented a new product development methodology suitable for the characteristics of AI-based intelligent new products with innovative characteristics through an excellent model combining KANO and TOPSIS.

Evaluation of Robustness of Deep Learning-Based Object Detection Models for Invertebrate Grazers Detection and Monitoring (조식동물 탐지 및 모니터링을 위한 딥러닝 기반 객체 탐지 모델의 강인성 평가)

  • Suho Bak;Heung-Min Kim;Tak-Young Kim;Jae-Young Lim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.297-309
    • /
    • 2023
  • The degradation of coastal ecosystems and fishery environments is accelerating due to the recent phenomenon of invertebrate grazers. To effectively monitor and implement preventive measures for this phenomenon, the adoption of remote sensing-based monitoring technology for extensive maritime areas is imperative. In this study, we compared and analyzed the robustness of deep learning-based object detection modelsfor detecting and monitoring invertebrate grazersfrom underwater videos. We constructed an image dataset targeting seven representative species of invertebrate grazers in the coastal waters of South Korea and trained deep learning-based object detection models, You Only Look Once (YOLO)v7 and YOLOv8, using this dataset. We evaluated the detection performance and speed of a total of six YOLO models (YOLOv7, YOLOv7x, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x) and conducted robustness evaluations considering various image distortions that may occur during underwater filming. The evaluation results showed that the YOLOv8 models demonstrated higher detection speed (approximately 71 to 141 FPS [frame per second]) compared to the number of parameters. In terms of detection performance, the YOLOv8 models (mean average precision [mAP] 0.848 to 0.882) exhibited better performance than the YOLOv7 models (mAP 0.847 to 0.850). Regarding model robustness, it was observed that the YOLOv7 models were more robust to shape distortions, while the YOLOv8 models were relatively more robust to color distortions. Therefore, considering that shape distortions occur less frequently in underwater video recordings while color distortions are more frequent in coastal areas, it can be concluded that utilizing YOLOv8 models is a valid choice for invertebrate grazer detection and monitoring in coastal waters.

Effect of Manganese Sulfate Concentration in Media on Production Speed of Insecticidal Crystal by Bacillus thuringiensis (배지 중 Manganese sulfate 농도가 Bacillus thuringiensis의 곤충독소 생성 시간에 미치는 영향)

  • Ro-Un Lee;Do Gyung Oh;Eun-Sun Jeong;Jung-Beom Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.170-175
    • /
    • 2023
  • In this study, the effect of MnSO4 on the insecticidal crystal (IC) produced by Bacillus thuringiensis for a rapid detection medium was analyzed. The strains used included one B. thuringiensis reference (KCTC 1511) and nine wild-type strains. The IC in B. thuringiensis was detected following the method published by the Ministry of Food and Drug Safety in Korea. In the nutrient agar to which 0.005% MnSO4 was added, IC was observed on two of the three plates after 48 hours of incubation and on all three plates after 120 hours. In AK agar, IC was observed on one and two of the three plates after 48 and 96 hours of incubation, respectively. These results indicated that 0.005% MnSO4 nutrient agar is more appropriate than AK agar for production of IC in B. thuringiensis. The effect of various MnSO4 concentrations on IC production was studied after 24 hours of incubation. IC was produced on 1 of the 10 plates with 0.000% MnSO4 nutrient agar, 2 of the 10 plates with 0.001% MnSO4 nutrient agar, and 3 of the 10 plates with 0.002% MnSO4 nutrient agar. IC was not observed for the other nutrient agars containing 0.003%-0.009% MnSO4. These results indicated that nutrient agar with 0.002% MnSO4 led to the most rapid production of IC by B. thuringiensis after 24 hours of incubation. However, the conditions for IC production by B. thuringiensis depended on the incubation conditions and strain activity. Therefore, further studies are needed to verify the effects of 0.002% MnSO4 on the production of IC by various Bacillus thuringiensis strains.

The Effects of Nursing Work Environment and Role Conflict on Job Embeddedness among Nurses of Long-term Care Hospital (요양병원 근무 간호사의 직무배태성에 미치는 영향: 근무환경과 역할갈등 중심으로)

  • Son, Sookyeon;Kim, Shinmi
    • 한국노년학
    • /
    • v.39 no.4
    • /
    • pp.663-677
    • /
    • 2019
  • This study was performed to identify the relationship and effects of nursing work environment and role conflict on job embeddedness among nurses working in long-term care hospitals. The data were collected from 200 nurses working in 10 long-term care hospitals from G - province from July to August 2018. Structured questionnaires assessing general characteristics and three major variables were distributed to the study participants and final 190 data set were analyzed using SPSS ver 25.0 program. Study results were as follows; mean score of job embeddedness was 2.98±0.46 out of 5 and the score of sub-domains were in order of fit, links, and sacrifice. The average score of the nursing work environment was 3.14 ± 0.42 and the leadership was the highest sub-domain followed by the working system, the relationship with peers, and the support of the institution. Overall role conflicts score was 3.43 ± 0.51, and environmental disorder, role ambiguity, lack of ability, lack of cooperation were reported in order as sub-domains. Job embeddedness of the study participants showed a statistically significant positive correlation with the nursing work environment and negative correlation with the role conflict. Factors affecting job embeddedness were nursing work environment, age, and role conflict, and the explanatory power of the model was 50.4%. The findings suggest that the overall level of job embeddedness of nurses working in long-term care hospitals is below middle level and efforts to improve job embeddedness through strategies related to nursing work environment and role conflict in organizational level. In addition, the relationship between age and job embeddedness needs to be studied further.

Metabolic Discrimination of Papaya (Carica papaya L.) Leaves Depending on Growth Temperature Using Multivariate Analysis of FT-IR Spectroscopy Data (FT-IR 스펙트럼 다변량통계분석을 이용한 파파야(Carica papaya L.)의 생육온도 변화에 따른 대사체 수준 식별)

  • Jung, Young Bin;Kim, Chun Hwan;Lim, Chan Kyu;Kim, Sung Chel;Song, Kwan Jeong;Song, Seung Yeob
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.378-383
    • /
    • 2019
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate papaya at metabolic level. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and 1,100-950 cm-1, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700-1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500-1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). The result of PCA analysis showed that papaya leaves could be separated into clusters depending on different growth temperature. In this case, showed discrimination confirmed according to metabolite content of growth condition from papaya. And PLS-DA analysis also showed more clear discrimination pattern than PCA result. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful papaya cultivars.

A Review on Solution Plans for Preventing Environmental Contamination as the Trend Changes of Cryptocurrency (암호화폐의 트랜드 변화에 따른 환경오염 방지 해결방안에 대한 고찰)

  • Kim, Jeong-hun;Song, Sae-hee;Ko, Lim-hwan;Nam, Hak-hyun;Jang, Jae-hyuck;Jung, Hoi-yun;Choi, Hyuck-jae
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Cryptocurrency, stood out the sharp cost rising of Bitcoin has been spotlighted by means of the solution for stagflation because it is decentralized with an existing currency differently. Especially getting into 4th industrial revolution, technologies using block chain and internet of things have been used in the many fields, and the power of influence is also widespread. Nevertheless like a remark of Elon Musk of Tesla CEO, the problems of environmental contamination for cryptocurrency have been pointed out continuously and the most representative of them is an enormous electric usage as the use of fossil fuels. Also the amount generated of carbon dioxide result in the acceleration of global warming mainly based on the climate changes of earth if the existing mining method is continued. On the other hand, review researches have been conducted restrictively as the connection with environmental contamination as the mining of cryptocurrency. In this study, it intended to review problems for environmental contamination as the diversification of ecological system of cryptocurrency concretely. Upon investigation existing prior documents on the putting recent data first, the mining of cryptocurrency has affected on the environmental contamination conflicting with carbon neutrality as increasement of the electric usage and electronic wastes. And POS method without the mining process appeared, but it had a demerit collapsing a decentralization and then we met turning point on appearing various environmental-friendly cryptocurrency. Finally the appearance of cryptocurrency using new renewable energy acted on the opportunity of the usage maximization of energy storage apparatus and the birth of national government intervention. Based on these results, we mention clearly that hereafter cryptocurrency will regress if not go abreast the value of currency as well as environmental approach.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.