• 제목/요약/키워드: 가속도 기반

검색결과 1,004건 처리시간 0.029초

GPU 기반 임베디드 시스템에서 대용량 데이터의 안정적 수신을 위한 ECC 연산의 가속화 (Acceleration of ECC Computation for Robust Massive Data Reception under GPU-based Embedded Systems)

  • 권지수;박대진
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.956-962
    • /
    • 2020
  • 최근 임베디드 시스템에서 사용되는 데이터의 크기가 증가함에 따라, 대용량의 데이터를 안전하게 수신하기 위한 ECC (Error Correction Code) 복호화 연산의 필요성이 강조되고 있다. 본 논문에서는 GPU가 내장된 임베디드 시스템에서 해밍 코드를 사용하여 ECC 복호화를 할 때, 신드롬 벡터를 계산하는 연산의 수행을 가속할 방법을 제안한다. 제안하는 가속화 방법은, 복호화 연산의 행렬-벡터 곱셈이 희소 행렬을 나타내는 자료 구조 중 하나인 CSR (Compressed Sparse Row) 형식을 사용하고, GPU의 CUDA 커널에서 병렬적으로 수행되도록 한다. 본 논문에서는 GPU가 내장된 실제 임베디드 보드를 사용하여 제안하는 방법을 검증하였고, 결과는 GPU 기반으로 가속된 ECC 복호화 연산이 CPU만을 사용한 경우에 비하여 수행 시간이 감소하는 것을 보여준다.

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.

공동주택 층간소음 저감을 위한 능동소음제어(ANC) 기술 적용가능성 분석 (Analysis of Applicability of Active Noise Control (ANC) technique for Reducing Inter-Floor Noise in Apartment Buildings)

  • 남진원;김호진;김준환;위혁;김중관
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.49-56
    • /
    • 2022
  • 본 연구에서는 능동소음제어(ANC, Active Noise Control) 기술을 이용하여 공동주택의 층간소음을 저감시키는 시뮬레이션 기반 연구를 수행하였다. ANC의 층간소음 저감 활용 가능성을 검토하기 위하여 층간소음시험시설에서 가속도계와 소음 수집용 마이크로폰을 설치하여 임팩트볼 낙하에 의한 소음진동을 측정하여 Fx-LMS 알고리즘 기반의 능동소음제어 시뮬레이션을 수행하였다. 이 과정에서 적응제어 수렴계수 등의 최적 시뮬레이션 조건을 도출한 후 가속도계와 스피커 수량을 변수로 하는 수치 시뮬레이션을 통해 소음저감효과를 분석하여 제한된 조건에서 층간소음을 저감시킬 수 있는 것을 확인하였다.

부채널 분석을 이용한 DNN 기반 MNIST 분류기 가중치 복구 공격 및 대응책 구현 (Weight Recovery Attacks for DNN-Based MNIST Classifier Using Side Channel Analysis and Implementation of Countermeasures)

  • 이영주;이승열;하재철
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.919-928
    • /
    • 2023
  • 딥러닝 기술은 자율 주행 자동차, 이미지 생성, 가상 음성 구현 등 다양한 분야에서 활용되고 있으며 하드웨어 장치에서 고속 동작을 위해 딥러닝 가속기가 등장하게 되었다. 그러나 최근에는 딥러닝 가속기에서 발생하는 부채널 정보를 이용한 내부 비밀 정보를 복구하는 공격이 연구되고 있다. 본 논문에서는 DNN(Deep Neural Network) 기반 MNIST 숫자 분류기를 마이크로 컨트롤러에서 구현한 후 상관 전력 분석(Correlation Power Analysis) 공격을 시도하여 딥러닝 가속기의 가중치(weight)를 충분히 복구할 수 있음을 확인하였다. 또한, 이러한 전력 분석 공격에 대응하기 위해 전력 측정 시점의 정렬 혼돈(misalignment) 원리를 적용한 Node-CUT 셔플링 방법을 제안하였다. 제안하는 대응책은 부채널 공격을 효과적으로 방어할 수 있으며, Fisher-Yates 셔플링 기법을 사용하는 것보다 추가 계산량이 1/3보다 더 줄어듦을 실험을 통해 확인하였다.

MOnCa2: 지능형 스마트폰 어플리케이션을 위한 사용자 이동 행위 인지와 경로 예측 기반의 고수준 콘텍스트 추론 프레임워크 (MOnCa2: High-Level Context Reasoning Framework based on User Travel Behavior Recognition and Route Prediction for Intelligent Smartphone Applications)

  • 김제민;박영택
    • 정보과학회 논문지
    • /
    • 제42권3호
    • /
    • pp.295-306
    • /
    • 2015
  • MOnCa2는 스마트폰에 장착된 센서와 온톨로지 추론 기반의 지능형 스마트폰 어플리케이션 구축을 위한 프레임워크다. 기존에 연구되었던 MOnCa는 온톨로지 인스턴스로 등록된 센서 값에 대한 정보를 바탕으로 사용자의 현재 상황을 판단 및 추론하였다. 이러한 방식은 사용자의 공간 정보나 주변에 존재하는 객체가 무엇인지 판단하는 것은 가능하나 사용자의 물리적인 콘텍스트(이동 행위, 이동할 목적지 등등) 판단하는 것은 불가능했다. 본 논문에서 설명하는 MOnCa2는 사용자 개개인의 물리적인 콘텍스트를 판단 및 추론하기 위해 스마트폰의 장착된 센서를 바탕으로 행위 및 이동 상황에 대응하는 인지 모델을 구축하고, 구축된 모델을 기반으로 사용자의 실시간 행위 및 이동 상황에 대해 1차적인 추론을 수행하며, 추론된 1차적인 콘텍스트에 대해 온톨로지 기반의 2차 추론을 통해 지능형 어플리케이션에 필요한 고수준 사용자 콘텍스트를 생산한다. 따라서 본 논문은 스마트폰의 가속도 센서를 기반으로 사용자의 이동에 필요한 행위를 인지하는 기법, 스마트폰의 GPS 신호를 바탕으로 이동 목적지와 경로를 예측하는 기법, 온톨로지 실체화를 적용하여 고수준 콘텍스트를 추론하는 과정에 초점을 맞추어 설명을 한다.

모바일 폰의 모션 인식에 의한 근거리 데이터 교환 (Near-field Data Exchange by Motion Recognition of mobile phone)

  • 황태원;서정희;박흥복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.800-801
    • /
    • 2017
  • 위치 기반 서비스(LBS)는 정보 통신 기술과 모바일 폰의 급속한 성장으로 응급 지원, 네비게이션, 위치, 교통 노선, 정보 수집, 엔터테인먼트 등 다양한 응용에서 활용되고 있다. 일반적으로 위치는 좌표로 표시되고 지형과 관련이 있으며, 모바일 기반의 데이터 전송에 많은 관심을 가지고 있다. 본 논문은 위치기반 서비스를 기반으로 근거리의 개별 사용자의 모바일 폰의 동작을 탐지하여 상대방의 연락처를 교환하는 방법을 제안한다. 제안 방법은 모바일 폰의 가속도 센서를 이용하여 움직임을 추출하고 움직임이 일정 시간 이상 지속되면 위치와 시간 정보를 서버로 전송한다. 서버측에서는 근거리에서 모바일 폰의 움직임이 발생하는 사용자들 사이의 연결을 시도한다. 사용자간에 연결이 성공하면 서버측으로부터 암호화된 연락처를 전송받는다. 실험 결과, 제안된 방법은 기존의 방법과 비교하여 핸드셋(Handset) 내의 처리를 최소화하여 데이터를 교환할 수 있음을 보여준다.

  • PDF