• Title/Summary/Keyword: 가속도

Search Result 6,188, Processing Time 0.033 seconds

A Falling Direction Detection Method Using Smartphone Accelerometer and Deep Learning Multiple Layers (스마트폰 가속도 센서와 딥러닝 다중 레이어를 이용한 넘어짐 방향 판단 방법)

  • Song, Teuk-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1165-1171
    • /
    • 2022
  • Human behavior recognition using an accelerometer has been applied to various fields. As smartphones have become used commonly, a method for human behavior recognition using the acceleration sensor built into the smartphone is being studied. In the case of the elderly, falling often leads to serious injuries, and falls are one of the major causes of accidents at construction fields. In this article, we proposed recognition method for human falling direction using built-in acceleration sensor and orientation sensor in the smartphone. In the past, it was a common method to use the magnitude of the acceleration vector to recognize human behavior. These days, deep learning has been actively studied and applied to various areas. In this article, we propose a method for recognizing the direction of human falling by applying the deep learning multilayer technique, which has been widely used recently.

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

Prediction and Validation of Design Loads of Satellite Components Using Modal Mass Acceleration Curve (모달 질량 가속도 곡선을 이용한 인공위성 탑재품의 설계하중 예측 및 검증)

  • Go, Myeong-Seok;Lim, Jae Hyuk;Kim, Kyung-Won;Hwang, Do-Soon;Oh, Hyunung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.739-748
    • /
    • 2021
  • This paper discusses the prediction and validation of design loads of satellite components using modal mass acceleration curve (Modal MAC). To calculate the acceleration upper bound of the satellite components subjected to the launch environment by the Modal MAC, the parameters of SpaceX Falcon 9 launch vehicle were used, and the acceleration upper bound curve in the modal domain was derived. After that, the maximum acceleration loads applied to the satellite components were predicted by combining Modal MAC with the spacecraft interface loads of the satellite/launch vehicle and modal information of the satellite. In addition, the accuracy of the Modal MAC was validated through comparison with the results of the coupled loads analysis using a simple satellite and launch vehicle model.

Proposition of a Vibration Based Acceleration Sensor for the Fully Implantable Hearing Aid (완전 이식형 보청기를 위한 진동 기반의 가속도 센서 제안)

  • Shin, Dong Ho;Mun, H.J.;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • The hybrid acoustic sensor for implantable hearing aid has the structure in which a sound pressure based acoustic sensor (ECM) and a vibration based acceleration sensor are combined. This sensor combines the low frequency sensitivity of an acoustic sensor with the high frequency sensitivity of an acceleration sensor, allowing the acquisition of a wide range of sound from low to high frequency. In this paper, an acceleration sensor for use in a hybrid acoustic sensor has been proposed. The acceleration sensor captures the vibration of the tympanic membrane generated by the acoustic signal. The size of the proposed acceleration sensor was determined to diameter of 3.2 mm considering the anatomical structure of the tympanic membrane and the standard of ECM. In order to make the hybrid acoustic sensor have high sensitivity and wide bandwidth characteristics, the aim of the resonance frequency of the acceleration sensor is to be generated at about 3.5 kHz. The membrane of the acceleration sensor derives geometric structure through mathematical model and finite element analysis. Based on the analysis results, the membrane was implemented through a chemical etching process. In order to verify the frequency characteristics of the implemented membrane, vibration measurement experiment using external force was performed. The experiment results showed mechanical resonance of the membrane occurred at 3.4 kHz. Therefore, it is considered that the proposed acceleration sensor can be utilized for a hybrid acoustic sensor.

A Study on Estimation of Gait Acceleration Signal Using Gait Video Signal in Wearable Device (걸음걸이 비디오를 활용한 웨어러블 기기 사용자 걸음걸이 가속도 신호 추정)

  • Lee, Duhyeong;Choi, Wonsuk;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1405-1417
    • /
    • 2017
  • Researches that apply the acceleration signal due to user's gait measured at the wearable device to the authentication technology are being introduced recently. The gait acceleration signal based authentication technologies introduced so far have assumed that an attacker can obtain a user's gait acceleration signal only by attaching accelerometer directly to user's body. And the practical attack method for gait acceleration signal based authentication technology is mimic attack and it uses a person whose physical condition is similar to the victim or identifies the gait characteristics through the video of the gait of the victim. However, mimic attack is not effective and attack success rate is also very low, so it is not considered a serious threat. In this paper, we propose Video Gait attack as a new attack method for gait acceleration signal based authentication technology. It is possible to know the position of the wearable device from the user's gait video signal and generate a signal that is very similar to the accelerometer's signal using dynamic equation. We compare the user's gait acceleration signal and the signal that is calculated from video of user's gait and dynamic equation with experiment data collected from eight subjects.

Design Method to Control Wind-Induced Vibration of High-Rise Buildings Using Resizing Algorithm (재분배기법을 이용한 고층건물의 풍응답 가속도 조절 설계기법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.465-473
    • /
    • 2010
  • As increase of height and slenderness of buildings, serviceability design criteria such as maximum lateral drift and wind-induced vibration level play an important role in structural design of high-rise buildings. Especially, wind-induced vibration is directly related to discomfort of occupants. However, no practical algorithm or design method is available for structural designers to control the acceleration level due to wind. This paper presented a control method for wind-induced vibration of high-rise buildings using the resizing algorithm. The level of vibration due to wind is calculated by well known estimation rules of ASCE 7-02, NBCC 95, SAA83, and Solari method. Based on the fact that the level of wind-induced vibration is inversely proportional to the magnitude of natural periods of buildings, in the design method, natural periods of a high-rise building are modified by redistribution of structural weight according to the resizing algorithm. The design method is applied to wind-induced vibration control design of real 42-story residential building and evaluated the efficiency and effectiveness.

Study of Time-to-go Polynomial Guidance Law with Considering Acceleration Limit (가속도 제한을 고려한 Time-to-go 다항식 유도 법칙 연구)

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.774-780
    • /
    • 2010
  • This paper deals with the choice of guidance gain for the time-to-go polynomial (POLY) guidance law when the acceleration limit is existed. POLY is derived based on the assumption that guidance commands are formed by a time-to-go polynomial function. The main characteristic of POLY is that any positive values can be used for its guidance gain. For this reason, it is ambiguous to choose a proper guidance gain. To relieve this difficulty, we firstly derive the closed-form solution of acceleration command and figure out the relationship between the maximum acceleration and guidance gain. From this analysis, we provide a guideline for choosing a guidance gain which satisfies the desired acceleration limit. Finally, the proposed method is demonstrated by simulation study.

Acceleration Sensor Using Optical Fibers and Film Gratings (광섬유와 필름격자를 이용한 가속도 센서)

  • Lee, Youn-Jea;Jo, Jae-Heung;Kwon, Il-Bum;Seo, Dae-Cheol;Lee, Nam-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2008
  • We develop a fiber optic acceleration sensor with LED, PD, POF, and a cantilever beam, having film grating at the edge of the beam. Light is transmitted from LED to PD through the film grating. When the cantilever beam moves by external vibration, output light is modulated as sinusoidal signals. The characteristics of output signals are dominated by the spacing of the film grating and also by the size and the elasticity of the beam. Two output signals, having constant initial phase difference, are obtained by two gratings with 90 degree phase difference. Those two signals are used to determine phase angle, which is proportional to the displacement of the beam. Finally, the acceleration is determined from conversion equation between displacement and acceleration. This sensor is designed for monitoring the vibration of large and complex building in the low frequency range of below 7 Hz, and is particularly suitable to measure acceleration in electromagnetic environments.

Determining the Orientation of Accelerograph Stations in South Korea using Ambient Noise Data (배경잡음 자료를 이용한 국내 가속도 관측망의 방위각 보정값 측정)

  • Lee, Sang-Jun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.195-200
    • /
    • 2021
  • Orientation corrections for the total of 268 accelerograph stations of the Korea Meteorological Administration (KMA) were estimated using ambient noise cross-correlation. As this method uses ambient noise data instead of teleseismic waveforms from earthquakes under certain conditions, reliable orientation corrections can be obtained using only two-month long continuous seismic data from dense seismic networks in the Korean peninsula.Three-component continuous data recorded at the 268 accelerograph stations from January to February 2020 were used to estimate orientation corrections. The results are comparable to the previous results obtained from teleseismic waveforms; the overall standard deviations of the orientation corrections are less than 5°. Therefore, orientation corrections for the accelerograph station network can be tracked periodically by the ambient-noise method and the result can be used in various studies using the horizontal-component of acceleration data.