DOI QR코드

DOI QR Code

A Falling Direction Detection Method Using Smartphone Accelerometer and Deep Learning Multiple Layers

스마트폰 가속도 센서와 딥러닝 다중 레이어를 이용한 넘어짐 방향 판단 방법

  • Received : 2022.07.09
  • Accepted : 2022.08.08
  • Published : 2022.08.31

Abstract

Human behavior recognition using an accelerometer has been applied to various fields. As smartphones have become used commonly, a method for human behavior recognition using the acceleration sensor built into the smartphone is being studied. In the case of the elderly, falling often leads to serious injuries, and falls are one of the major causes of accidents at construction fields. In this article, we proposed recognition method for human falling direction using built-in acceleration sensor and orientation sensor in the smartphone. In the past, it was a common method to use the magnitude of the acceleration vector to recognize human behavior. These days, deep learning has been actively studied and applied to various areas. In this article, we propose a method for recognizing the direction of human falling by applying the deep learning multilayer technique, which has been widely used recently.

가속도 센서를 이용한 인간의 행동인식은 다양한 분야에 적용되고 있다. 스마트폰의 보급이 일반화되면서 스마트폰에 내장된 가속도 센서를 이용한 인간의 행동인식 방법이 연구되고 있다. 노인의 경우 넘어지게 되면 심각한 부상으로 이어지는 경우가 많으며 공사 현장에서도 넘어짐은 중요한 사고원인 중 하나이다. 본 연구는 스마트폰에 내장된 가속도 센서와 방향 센서를 이용하여 사람의 넘어지는 방향에 대해 연구하였다. 기존에는, 인간의 행동을 인식하기 위해서 가속도벡터의 크기를 활용하는 것이 일반적인 방법이었다. 본 연구는 최근 많이 활용되고 있는 딥러닝 기법을 적용하여 인간의 넘어지는 방향을 인식하는 방법을 제안하였다.

Keywords

Acknowledgement

This work was supported by Mokwon university research year 2020.

References

  1. Y. Wu, Y. Xiao, and H. Ge, "Fall Detection Monitoring System Based on MEMS Sensor," in Proceeding 2020 International Conference on Applied Physics and Computing, Tokyo, Japan, pp. 1-7, 2020.
  2. Y. Harari, N. Shawen, and C. K. Mummidisetty, M. V. Albert, K. P. Kording, and A. Jayaraman, "A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls," Journal of NeuroEngineering Rehabil, vol. 18, no. 124, pp. 1-13, Aug. 2021. https://doi.org/10.1186/s12984-020-00774-3
  3. A. Chelli and M. Patzold, "A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition," IEEE Access, vol. 7, pp. 38670-38687, Mar. 2019. https://doi.org/10.1109/ACCESS.2019.2906693
  4. F. Shu and J. Shu, "An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box," Scientific Reports, vol. 11, no. 2471, pp. 1-16, Jan. 2021. https://doi.org/10.1038/s41598-020-79139-8
  5. Korea Occupational Safety and Health Agency [Internet]. Available: https://www.kosha.or.kr/kosha/index.do
  6. J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity recognition using cell phone accelerometers," ACM SIGKDDExplorations Newsletter, vol. 12, no. 2, pp. 74-82, Dec. 2010.
  7. A. Nabili, B. Q. Tran, Q. T. Huynh, S. V. Tran, and U.D. Nguyen, "Fall Detection System Using Combination Accelerometer and Gyroscope," in Proceeding of the Second International on Advances Electronic Devices and Circuits 2013, Kuala Lumpur, Malaysia, pp. 52-56, 2013.
  8. Y. W. Bai, S. C. Wu, and C. H. Yu, "Recognition of direction of fall by smartphone," in Proceeding of the 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina: SK, Canada, pp. 1-6, 2013.
  9. W. Lee, T. S. Song, and J. H. Youn, "Fall Direction Detection using the Components of Acceleration Vector and Orientation Sensor on the Smartphone Environment," Journal of Korea Multimedia Society, vol. 18, no. 4, pp. 565-574, Apr. 2015. https://doi.org/10.9717/KMMS.2015.18.4.565
  10. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986. https://doi.org/10.1038/323533a0
  11. T. B. Rodrigues, D. P. Salgado, M. C. Cordeiro, K. M. Osterwald, T. F. B. Filho, V. F. de Lucena Jr., E. L. M. Naves, and N. Murray, "Fall Detection System by Machine Learning Framework for Public Health," Procedia Computer Science, vol. 141, pp. 358-365, 2018. https://doi.org/10.1016/j.procs.2018.10.189
  12. L. Chen, R. Li, H. Zhang, L. Tian, and N. Chen, "Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch," Measurement, vol. 140, pp. 215-226, Jul. 2019. https://doi.org/10.1016/j.measurement.2019.03.079
  13. A. S. Syed, D. S. -Sora, A. Kumar, and A. Elmaghraby, "A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling," Sensors, vol. 21. no. 19, pp. 1-14, 2021. https://doi.org/10.1109/JSEN.2020.3039123
  14. Y. W. Bai, S. C. Wu, and C. H. Yu, "Recognition of direction of fall by smartphone," in Proceeding of the 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina: SK, Canada, pp. 1-6, 2013.
  15. C. Taramasco, T. Rodenas, F. Martinez, P. Fuentes, R. Munoz, R. Olivares, V. H. C. D. Albuquerque, and J. Demongeot, "A novel monitoring system for fall detection in older people", IEEE Access, vol. 6, pp. 43563-43574, Jul. 2018. https://doi.org/10.1109/ACCESS.2018.2861331
  16. Y. Nizam, M. N. H. Mohd, and M. M. A. Jamil, "Development of a User-Adaptable Human Fall Detection Based on Fall Risk Levels Using Depth Sensor," Sensors, vol. 18. no. 7 . pp. 1-14, Jul. 2018. https://doi.org/10.1109/JSEN.2017.2772700