• Title/Summary/Keyword: 가소제

Search Result 294, Processing Time 0.03 seconds

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.96-20 s.165
    • /
    • pp.19-40
    • /
    • 1996
  • PDF

Preparation and Adhesion of One Part Room Temperature Curable Alkoxy Type Silicone Sealant (일액형 알코올형 실리콘 실란트의 제조 및 접착 물성)

  • Kim, Dae-Jun;Park, Young-Jun;Kim, Hyun-Joong;Lee, Bong Woo;Han, Jae Chul
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Silicone sealants are composed of polymer, plasticizer, crosslinker, catalyst and filler. Types and compositions of components are effected on sealant performances. In recent, use of alkoxy type silicone sealant increased due to environmental advantage. In this study, we investigated effects of component types and ratios on one-part room temperature curable alkoxy type silicone sealant preparation and adhesion properties. Alkoxy type silicone sealants were prepared with various PDMS (polydimethylsiloxane) viscosities. In addition, the effect of plasticizer, crosslinkers, and catalyst on sealant obtained from by mixture of PDMS viscosities of 20000 and 80000 was investigated. Reaction temperature on change of mixing time was observed, and then proper crosslinking systems were found. Adhesion (properties) of silicone sealants were measured. In the sealants preparation, stable reaction was achieved by adjusting composition variance ratio in the sealant mixture temperature below $40^{\circ}C$. The adhesion properties of sealant differ from substrate composition. The order of adhesion strength was glass/glass > glass/aluminum > aluminum/aluminum system. The elongation of sealant was increased as polymer viscosity and plasticizer content increased. The strength was increased as crosslinker and plasticizer decreased, while catalyst increased.

  • PDF

고체 충전제의 입자 분포에 따른 추진제 특성

  • 김창기;황갑성;임유진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.28-28
    • /
    • 2000
  • HTPB/AP/AI 추진제는 none-reinforcing filler가 다량 함유되어 있어 기계적 특성은 바인더와 고체 충진제의 계면 접착력에 따라 크게 영향을 받으며 이를 향상시키기 위해 결합제의 연구가 다수 진행되었고 추진제의 인장 변형율을 증가시키기 위해 HTPB의 관능기수에 따른 가교밀도, 경화제와 경화촉매, 가소제등 최적의 바인더조성을 위해 가능한 원료 및 함량 연구에 많은 노력을 기울여 왔다. 또한 추진제의 주원료로서 AP는 추진제의 성능 및 내탄도 관점에서 입자크기에 따른 연소특성 및 고성능을 위한 충전 분율에 대해 주로 연구되었으며 특히 Oberth와 Farris는 고체추진제 분야에서 많은 업적을 이루었다.(중략)

  • PDF

The Study on the Synthesis of Triazole Derivatives as Energetic Plasticizer (트리아졸 계열의 에너지 가소제 합성 연구)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • Most of propellants that is used widely in the world release toxic gases such as methane gas and carbon dioxide during combustion which are noxious to the environment. This study established a synthetic process of a high nitrogen containing derivative of triazole, 4,5-bis(azidomethyl)-methyl-1,2,3-triazole (DAMTR), which can be applied as energetic plasticizer to environmental concerns. Also, the compound was characterized by NMR, IR spectroscopy, and physical properties such as glass transition temperature, melting point, decomposition temperature, density, impact sensitivity, viscosity and volatility were measured. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMTR were calculated using Gaussian 09 and EXPLO5 programs.

Electrochemical Characteristics and Physical Properties of Poly(ethylene oxide)-Li based Polymer Electrolyte (Poly(ethylene oxide)-Li계 고분자 전해질의 전기화학적 특성 및 물리적 성질)

  • Kim, Hyung-Sun;Cho, Byung-Won;Yun, Kyung-Suk;Chun, Hai-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.433-442
    • /
    • 1996
  • Electrochemical characteristics and physical properties of polymer electrolyte which immobilized lithium salts such as $LiClO_4$ and $LiCF_3SO_3$ and plasticizers such as ethylene carbonate(EC) and propylene carbonate(PC) in high molecular weight poly(ethylene oxide)[PEO] polymer was investigated. PEO-Li based polymer electrolyte with plasticizers showed ionic conductivity of $10^{-4}S/cm$ at room temperature and high electrochemical stability up to 4.5 V(vs. $Li^+/Li$), so it can be applied to lithium secondary battery. The crystallinity of PEO decreased with the addition of lithium salts and plasticizers, especially $LiClO_4$ and PC showed more effective than and $LiCF_3SO_3$ and EC. Glass transition temperature($T_g$) of polymer electrolyte increased with increasing lithium salt concentration whereas melting temperature ($T_m$) decreased. Polymer electrolyte with plasticizers crystallized at $6^{\circ}C$.

  • PDF

Preparation and Mechanical Properties of Nanocomposite of Cellulose Diacetate/Montmorillonite (셀룰로오스 디아세테이트/몬모릴로나이트 나노복합체의 제조 및 기계적 물성)

  • 조미숙;최성헌;남재도;이영관
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.551-555
    • /
    • 2004
  • Cellulose diacetate (CDA) nanocomposite films were prepared by using various plasticizer and montmorillonite nanofiller in methylene chloride/ethanol (9:1 w/w) mixed solution. The thermal property (T$_{g}$) of prepared CDA films was observed by DSC and T$_{g}$ of the films was decreased with the increase in the plasticizer content. The degree of dispersion of MMT in the CDA film was observed by XRD and mechanical property of CDA film was measured by tensile strength and Young's modulus. When the plasticizer was added into the CDA film upto 30 wt%, the Young's modulus of film was decreased from 1930 MPa to 1131 MPa but was increased from 1731 MPa to 2272 MPa when the MMT was added into the film upto 7 wt%. The mechanical properties of CDA films were decreased by addition of plasticizer but strengthened by the incorporation of MMT.

Elution of Plasticizer fvom PVC Sheet in Alkaline Solutions (알카리수용액중에서 PVC Sheet로부터 가소제의 추출)

  • 신선명;전석호;한오형
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.14-19
    • /
    • 2002
  • PVC sheet was treated in O~10M NaOH solutions at $80~150^{\circ}C$ for O~7 hour, in order to study the leaching phenomena of plasticizer. The yield of phthalic acid produced by hydrolysis of DOP was increased greatly with increasing temperature and NaOH concentration by accelerating of alkali catalyst. The yield of phthalic acid was reached ca. 100% in 10M NaOH at $150^{\circ}C$ over 3 hours. Therefore, the plasticizer containing 30% in PVC sheet could be hydrolyzed in alkali solutions before the occurrence of dehydrochlorination. Besides, in the thermal reaction, the pores were produced in the PVCsheet by the hydrolysis of DOP.

Engineering Characteristics of Plasticizer Lightweight Foamed Concrete according to Changes of Mixing Ratio (가소성 경량기포콘크리트의 배합비 변화에 따른 공학적 특성)

  • Seo, Doowon;Kim, Hyeyang;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The lightweight foamed concrete is used to reduce the weight of the backfill material. When it is applied, the volume is often contracted due to segregation, necessitating re-injection. In this study, it was manufactured a new lightweight foamed concrete by adding plasticizer and tested the engineering properties of the material. The tests included unconfined compressive strength test, unit weight test, flow test, pH test, and permeability test. The plasticizer is shown to have an important influence on the flow. It was shown that 2~2.4% of plasticizer was adequate. The new material was shown to have positive influence on the flow and reduction of weight when applied to the backfill of the structures.

Study on Deiodination of Drawn Polyvinyl Alcohol-iodine Complex Films (연신된 폴리비닐알코올-요드 복합체 필름의 요드제거에 관한 연구)

  • 손현식;신은주;이양헌
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.87-90
    • /
    • 2003
  • Polyvinyl Alcohol(PVA)와 같이 분자간 결합력이 큰 극성고분자에 극성의 가소제를 도입하여 가역적 가소화기법을 이용하여 비결정영역뿐만 아니라 결정영역까지도 가소화시켜 연신성을 개선시키고자하는 연구가 일부 이루어져 왔다. 특히 요드는 극성고분자의 비결정 영역뿐만 아니라 결정영역까지 침투한다는 사실이 밝혀지면서 PVA의 요드 처리에 대한 연구가 많이 이루어져왔다[1-3]. 그러나 지금까지의 연구에서는 대부분 필름이나 섬유와 같이 성형가공된 상태에서, 즉 결정화가 이루어진 후에 요드화를 시켰기 때문에 그 응용범위나 연구에 있어서 한계를 지니고 있다고 할 수 있다. (중략)

  • PDF