• Title/Summary/Keyword: 가소제

Search Result 294, Processing Time 0.037 seconds

Preparation and Characterization of Cellulose Acetate/Poly Ethylene Glycol Blend Having High Melt Processibility (우수한 용융특성을 갖는 Cellulose acetate/Poly ethylene glycol 조성물의 제조 및 특성 해석)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eunjoo;Go, Young Jun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: Cellulose acetate (CA) was blended with polyethyleneglycol (PEG) having different molecular weight at various mixing conditions to enhance melt-processibility of CA, which might prevent the harmful effect resulted from the introduction of phthalic plasticizer. Methods: To establish optimal plasticizing conditions, CA/PEG blends were examined under various plasticizing conditions: PEG concentration, molecular weight of PEG, and plasticzing temperature. Mechanical properties of the CA/PEG blends, as well as migration and exudation of the PEG, were performed in order to evaluate the efficiency of plasticization. Results: Compared to industrial CA resin plasticized by diethyl phthalate, CA/PEG blends exhibited similar thermal plasticization. It was established that the optimum condition was to blend 30~40 phr PEG with molecular weight 400 at $175{\sim}180^{\circ}C$. CA/PEG blend showed superior glassness, PEG stability, and mechanical properties. Conclusions: CA/PEG blends would be a eco-friendly glasses frame to substitute traditional CA glasses frame prepared phthalate plasticizers.

Preparation and Properties of Plasticized Cellulose Diacetate Using Triacetine/Epoxidized Soybean Oil (트리아세틴/ESO를 이용한 가소화 셀룰로오스 디아세테이트의 제조 및 물성)

  • Lee, Sang-Hwan;Lee, Sang-Yool;Lim, Hwan-Kyu;Nam, Jae-Do;Kye, Hyoung-San;Lee, Young-Kwan
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.202-206
    • /
    • 2006
  • The plasticized cellulose diacetate (CDA) was prepared by melt processing methods using triacetine (TA) as a plasticizer. Additionally, processability of CDA was enhanced by using epoxidized soybean oil as a secondary plasticizer. The glass transition temperature of plasticized CDA was observed at $50^{\circ}C$ lower than virgin CDA and the incorporation of 5% ESO also resulted in the additional $20^{\circ}C$ decrease in the $T_g$. The tensile properties and modulus of plasticized CDA were better than commercial PP and PLA. The aerobic biodegradability of CDA in controlled compositing condition resulted in 90% of degradation during 60 days.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Electrochemical Properties of PVdF Gel Polymer Electrolyte with Plasticizer for Lithium/sulfur Battery (리튬 유황 전지용 PVdF 겔 고분자 전해질의 가소제에 따른 전기화학적 특성 평가)

  • Ryu, Ho-Suk;Kim, Jong-Seon;Kim, Dong-Ju;Kim, Dong-Yeon;Kim, Ic-Pyo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon;Lee, Gun-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • In order to find out proper PVdF gel polymer electrolyte for Li/S battery, we investigated PVdF gel polymer electrolytes with various glyme type plasticizer such as polyglyme, tetraglyme, triglyme. The organic solvents as triglyme, tetraglyme, polyglyme (Mn = 250, 500) has different chain length of ethylene oxide(EO) in solvent of glyme system. ionic conductivity decreased as increasing chain length of EO in plasticizers. Ionic conductivity of PVdF gel electrolyte with tetraglyme, triglyme, polyglyme (Mn = 250, 500) at room temperature was $5{\times}10^{-4},\;3{\times}10^{-4},\;6{\times}10^{-5},\;3{\times}10^{-5}\;S/cm$, respectively. Li/S cell with PVdF gel polymer electrolyte using tetraglyme plasticizer had low interfacial resistance and the highest initial discharge capacity of 1232 mAh/g of active sulfur, which was about 70% utilization of theoretical value.

Effect of Plasticizers on Mechanical Properties of PVC Compounds (PVC 컴파운드의 기계적 물성에 대한 가소제의 영향)

  • Oh, D.H.;Kim, D.J.;Seo, K.H.
    • Elastomers and Composites
    • /
    • v.34 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • Di-2-ethyl hexyl phthalate (DOP) and di-2-ethyl hexyl adiphate (DOA) were mixed with poly(vlnvl chlorides) [PVC] which have different degrees of polymerization (DP). Tensile strength, elongation, density, abrasion resistance, and hardness of these compounds were measured, High molecular weight PVC(DP 2500) was superior to that of DP 1300 for tensile strength, Hardness. But elongation and abrasion resistance of P1300 systems were better than those of P2500 systems. The densities of both systems were almost same. On the other hand, DOP Plasticized PVC was superior to DOA plasticized one for tensile strength, elongation, hardness. In cases of density, abrasion resistance, and flexual resistance, DOA systems were better than those of DOP systems.

  • PDF

Mechanical and Barrier Properties of Soybean Curd Residue Protein Films (비지 단백질로 제조한 가식성필름의 기계적 및 물질투과특성)

  • Cho, Seung-Yong;Park, Jang-Woo;Rhee, Chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1999
  • Edible films were prepared from proteins extracted from soybean curd residue by alkaline extraction and isoelectric precipitation. Effects of film forming solution pH and plasticizers on mechanical and barrier properties of edible films were studied. films were formed within pH $7{\sim}11$ with tensile strength (TS) of $2.9{\sim}3.3$ MPa. Films produced under pH 10 had the highest TS and Elongation (E) (3.3 MPa and 60.1%) but no significant difference was observed among water vapor permeabilities (WVP) of film. Glycerol, sorbitol and its mixture (1:1, w/w) were added as plasticizers. The concentration and mixing ratio of plasticizers also affected the TS, E and WVP of films. TS of films decreased from 15.0 MPa to 2.9 MPa as plasticizer concentration increased from 0.4 to 0.8 g plasticizer/g protein. At a plasticizer concentration, the highest TS was observed when sorbitol was used whereas the highest E was measured when mixture of glycerol and sorbitol was used as plasticizer WVP of films increased as the plasticizer concentration increased. Films plasticized with glycerol showed the highest WVP among the films with the same plasticizer concentrations. Edible films prepared from soybean curd residue protein showed very low oxygen permeabilities ($29.5{\sim}61.1aL{\cdot}m/m^2{\cdot}s{\cdot}Pa$) and oil resistance at all plasticizer concentration level tested.

  • PDF