• Title/Summary/Keyword: 가상 재료법

Search Result 36, Processing Time 0.024 seconds

Fracture Mechanics Analysis of Multi-Phase Material by Finite Eelement Method (유한요소법에 의한 다상재료의 파괴역학적 해석)

  • 표창률;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.221-228
    • /
    • 1989
  • The objective of this paper is to develop a numerical technique for analyzing crack driving forces in multi-phase materials. The analysis was based on finite element method coupled with a virtual crack extension technique which is known as the most efficient tool in computational fracture mechanics analysis. The modified J-integral method, proposed by Miyamoto and Kikuchi for the analysis of dual-phase material was carried out by subtracting the J-values for contours surrounding each phase boundary from the J-values for overall contour. It was shown that the proposed numerical procedure, based on the modified J-integral coupled with a virtual crack extension technique, can be used as an effective numerical tool for determining crack driving forces in multi-phase materials.

Characteristics of Dynamic Wave Propagation in Peridynamic Analysis with Nonlocal Ghost Interlayer (가상 층간 구조 페리다이나믹 해석의 파동 전파 특성 검토)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.257-263
    • /
    • 2019
  • Multilayered structures include lamination by relatively thick plies and thin interlayers. For efficient peridynamic analysis of dynamic fracturing multilayered structures, the interlayer is modeled using ghost peridynamic particles while the ply is formulated via real peridynamics. With the nonlocal ghost interlayer, one may keep the discretization resolution low for the ply. In this study, the characteristics of dynamic wave propagation through the nonlocal ghost interlayer in peridynamic analysis are investigated. It is observed that the interlayer not only binds adjacent plies, but also significantly influences energy transfer between plies, and thereby their deformation and motion. In addition, near a surface or boundary, peridynamic particles do not have a full nonlocal neighborhoods. This causes the effective material properties near the surface to be different from those in the bulk. Surface correction based on neighborhood volumes is employed. The impact of surface correction on wave propagation in multilayered structures is investigated.

An Analysis of Acoustic Characteristics from the Acoustic Trancdurcer with Finite Element Method and Boundary Element Method (유한요소법과 경계요소법을 이용한 음향트랜스듀서의 음향특성 해석)

  • Noh, Hyun-Taek;Go, Young-Jun;Nam, Hyo-Duk;Seo, Hee-Don;Chang, Ho-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.287-290
    • /
    • 2000
  • 본 연구에서는 압전세라믹스와 금속판으로 구성된 음향트랜스듀서를 모델로 설정하고, 원형평판으로부터 방사되는 내부음장과 트랜스듀서의 외부로 방사되는 음향특성을 수치 해석하였다. 음향트랜스듀서의 내부 유니트를 요소 분할하며 경계조건을 적용시키고, 유한요소법을 이용하여 내부의 음장 분포와 음압 변화량을 가시화하였다. 그리고 트랜스듀서 외부로 방사되는 음압은 가상경계면 외부를 요소분할한 후 다양한 주파수에서 음압 기울기와 등압선을 수치해석하였다.

  • PDF

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks (원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석)

  • Ahn, Jae-Seok;Kim, Young-Wook;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.411-418
    • /
    • 2012
  • In this study, behavior of unpatched and patched cylindrical shells with through-wall cracks has been estimated using numerical experiments, and patching effect of them has been investigated according to various patching parameters. To show credibility of numerical models considered, two ways such as h- and p-methods have been adopted. Also, domain integral method and virtual crack extension method have been considered to calculate energy release rates based on linear elastic fracture mechanics. For examples, the unpatched cylindrical shells with circumferential cracks under remote tension have firstly been analyzed to show the validity of finite element modeling with h-method or p-method, and then the results have been compared with literature values published. Next, the sensitive analysis of patch repaired problems in terms of thickness of patch and adhesive, shear modulus of adhesive, composite material type of patch, crack length, etc. has been carried out.

Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations (이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • Industrial mixers to homogeneously blend particulate materials have been developed and widely used in various industries. However, most industrial mixers have at most two-degree-of-freedom for the operation, which limits the range of operation parameter selection for optimal blending. This paper proposes a multi-degree-of-freedom robotic mixer designed by converging a conventional drum blender and a robotic manipulator and evaluated its performance in a virtual operating environment. Discrete element simulations were conducted for mixing performance evaluation. The numerical results showed that the proposed mixer design exhibits a better mixing performance than conventional ones.

A study on the compression test using virtual reality (가상현실을 이용한 압축 실험에 관한 연구)

  • Lee Ho-Yong;Lim Joong-Yeon;Jung Ji-Youn
    • Journal of Engineering Education Research
    • /
    • v.2 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • This paper is concerned with the compression test such as compression and ring compression tests, by using virtual reality. Engineering material laboratory can be carried out on personal computer without the real expensive experiment devices. The virtual laboratory is composed of three modules as input, calculation and output module on internet. Internet user can give the material's property and other parameters to the server computer at the input module. On the calculation module, simulator cimputes the results by analysis program and store the data as a file. The output module is the program that internet user can confirm a virtual compression results by showing a table, graph, and 3D animation. This program is designed by Internet language such as HTML, CGI, VRML, JAVA. And analysis program uses the finite element method with fortran language. Since the study of virtual reality on internet is rapidly increasing, the virtual experiment of technique will substitute many real experiments in the future.

  • PDF

Prediction of Atomic Oxygen Erosion for Coating Material of LEO Satellite's Solar Array by Using the Real Ram Direction Accumulation Method (실 궤도면 누적량 계산법을 활용한 원자산소의 저궤도위성 태양전지판 코팅재료 침식량 예측)

  • Kim, You-Gwang;Lee, Sang-Taek;Baek, Myung-Jin;Lee, Suk-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.1-5
    • /
    • 2017
  • This objective of this study is an effort to predict atomic oxygen (ATOX) erosion as ot affects coating material(s) of LEO satellite's solar array by implementing the 'real ram direction accumulation method'. We observed the difference of ATOX Fluence between the previous 'Maximum worst case estimation method' and 'Real ram direction accumulation method' and we plan to implement these findings for the purpose of evaluating the level of compliance for design submitted by solar array suppliers. We used the SPENVIS(Space Environment Information System) served by ESA based on assumption orbit information, and applied the satellite orbit calculation software for calculating the ATOX Flux crushed solar array in real orbit surface.

A Study on Composite Blade Analysis Library Development through Dimension Reduction/Recovery and Calculating Energy Release Rate (단면의 차원축소/복원해석과 에너지 해방률 계산을 위한 복합재 블레이드 해석 라이브러리 개발에 대한 연구)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • In this paper, numerical results of sectional analysis, stress recovery and energy release rate were compared with the results of VABS, 3-D FEM through the blade analysis library. The result of stress recovery analysis for one-dimensional model including the stiffness matrix is compared with stress results of three-dimensional FEM. We discuss the configuration of the blade analysis library and compare verifications of numerical analysis results of VABS. Blade analysis library through dimensional reduction and stress recovery is intended to be utilized in conjunction with pre- and post-processing of the analysis program of the composite blade, high-altitude uav's wing, wind blades and tilt rotor blade.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.