• Title/Summary/Keyword: 가상 공정 설계

Search Result 66, Processing Time 0.034 seconds

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

ASS Design to Collect Manufacturing Data in Smart Factory Environment (스마트 팩토리 환경에서 제조 데이터 수집을 위한 AAS 설계)

  • Jung, Jin-uk;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.204-206
    • /
    • 2022
  • Digital twin, which is evaluated as the core of smart factory advancement, is a technology that implements a digital replica in the virtual world with the same properties and functions of assets in the real world. Since the smart factory to which digital twin is applied can support services such as real-time production process monitoring, production process simulation, and predictive maintenance of facilities, it is expected to contribute to reducing production costs and improving productivity. AAS (Asset Administration Shell) is an essential technology for implementing digital twin and supports a method to digitally represent physical assets in real world. In this paper, we design AAS for manufacturing data gathering to be used in real-time CNC (Computer Numerical Control) monitoring system in operation by considering manufacturing facility in smart factory as assets.

  • PDF

A Scalable Word-based RSA Cryptoprocessor with PCI Interface Using Pseudo Carry Look-ahead Adder (가상 캐리 예측 덧셈기와 PCI 인터페이스를 갖는 분할형 워드 기반 RSA 암호 칩의 설계)

  • Gwon, Taek-Won;Choe, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.34-41
    • /
    • 2002
  • This paper describes a scalable implementation method of a word-based RSA cryptoprocessor using pseudo carry look-ahead adder The basic organization of the modular multiplier consists of two layers of carry-save adders (CSA) and a reduced carry generation and Propagation scheme called the pseudo carry look-ahead adder for the high-speed final addition. The proposed modular multiplier does not need complicated shift and alignment blocks to generate the next word at each clock cycle. Therefore, the proposed architecture reduces the hardware resources and speeds up the modular computation. We implemented a single-chip 1024-bit RSA cryptoprocessor based on the word-based modular multiplier with 256 datapaths in 0.5${\mu}{\textrm}{m}$ SOG technology after verifying the proposed architectures using FPGA with PCI bus.

Design of a New Thermal shut Down Protection Circuit for LED Driver IC Applications (LED 구동회로를 위한 새로운 과열방지회로 설계)

  • Heo, Yun-Seok;Jung, Jin-Woo;Park, Won-Kyoung;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5832-5837
    • /
    • 2011
  • In this paper, we designed a thermal shutdown block for LED applications using a 1 ${\mu}m$ CMOS process. The proposed thermal shutdown protection circuit has been designed with a shut-off temperature of $120^{\circ}C$ and a restart temperature of $90^{\circ}C$ which are suitable conditions for LED driver IC. Also, we got SPICE simulation results of the circuit about process variation of the semiconductor fabrication. From simulation data, process variation rate of the proposed circuit are within 7 % which are good results compared with conventional BJT current mirror type circuit. Finally, we confirmed that the thermal shutdown circuit has good thermal protection function within a LED driver IC.

Developing Automatic Lens Module Assembly System Using 3D Simulation (3D 시뮬레이션을 활용한 렌즈모듈 자동화조립시스템 개발)

  • Moon, Dug-Hee;Lee, Jun-Seok;Baek, Seung-Geun;Zhang, Bing-Lin;Kim, Yeong-Gyoo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.65-74
    • /
    • 2007
  • Virtual manufacturing (VM) is a powerful technology for developing a new product, new equipment and new manufacturing system, and three-dimensional (3D) simulation is a core technology in VM. 3D simulation involves both mechanical simulation and discrete event simulation. This paper introduces a case study of implementing 3D simulation for developing an automatic assembly line in a Korean optical factory. This factory produces a lens module that is the part of a phone-camera. 3D simulation technology is applied from the early stage of development. In the conceptual design and the initial design phases for individual equipment, 3D mechanical simulation using $CATIA^{(R)}$ and $IGRIP^{(R)}$ is conducted. 3D discrete event simulation with $QUEST^{(R)}$ is applied to the detailed design of the equipment and of the whole system. The focus of the simulation is to verify the technical and economical feasibility of the new automatic system. As a result, the takt time is reduced to the quarter of the manual system, and the number of workers in a line is reduced tremendously.

  • PDF

Workflow Procedures and Applications in BIM-based Design for Safety (DfS) (BIM 기반 설계안전성검토의 업무 절차와 활용 방안에 관한 연구)

  • Jaewoong Hwang;Heetaek Yoon;Junhyun Bae;Youngkon Park
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • A conventional Design for Safety (DfS), introduced to eliminate potential hazards in the design phase proactively, has encountered persistent challenges, such as perfunctory risk assessments and hazard identifications based on 2D drawings and inefficient workflow processes. This study proposes a BIM-based approach to Design for Safety (DfS) to address the limitations of conventional methods, aiming to enhance efficiency and achieve practical safety management benefits. The proposed workflow process for BIM-based DfS has been refined and validated for on-site applicability through various case studies, including risk assessments during the design phase and field applications for safety management activities during the construction phase. Specifically, the critical process of risk assessment within the DfS methodology has also been transitioned to a BIM-based approach. This BIM-based risk assessment process has been evaluated through case studies, encompassing safety reviews for structural design, construction equipment operation, and construction methodology with sequence in design projects. Additionally, the proposed BIM-based DfS has demonstrated exceptional on-site applicability and efficiency, as validated by the application of a BIM deliverable embedded in DfS information for CDE-based daily activity briefing, VR-based safety training, AR-based mitigation measures inspections, and other safety management activities in the construction phase.

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing (파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구)

  • Lee, Jong-Youl;Lee, Min-Soo;Choi, Heui-Joo;Bae, Dae-Seok;Kim, Kyeong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2012
  • A long-term R&D program for HLW disposal technology development was launched in 1997 in Korea and Korea Reference disposal System(KRS) for spent fuels had been developed. After then, a recycling process for PWR spent fuels to get the reusable material such as uranium or TRU and to reduce the volume of radioactive waste, called Pyro-process, is being developed. This Pyro-process produces several kinds of wastes including metal waste and ceramic waste. In this study, the characteristics of the waste from Pyro-process and the concepts of a disposal container for the wastes were described. Based on these concepts, thermal analyses were carried out to determine a layout of the disposal area of the ceramic wastes which was classified as a high level waste and to develop the disposal system called A-KRS. The location of the final repository for A-KRS is not determined yet, thus to review the potential repository domains, the possible layout in the geological characteristics of KURT facility site was proposed. These results will be used in developing a repository system design and in performing the safety assessment.

Development of virtual reality contents for vocational education Research on Semiconductor production line Clean Room Tour (직업교육을 위한 가상현실 콘텐츠 구현 반도체 생산라인 클린룸 투어 VR 중심으로)

  • Lee, Sun-Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.191-197
    • /
    • 2023
  • The purpose of the study was to provide an educational environment for designing and producing virtual reality practice contents that can be used in semiconductor production lines and clean rooms. Through this process, the user can acquire practical knowledge through experiences close to reality, such as experiencing the main semiconductor solar cell manufacturing facilities as well as procedural knowledge before and after entering the clean room.. In particular, it provides users with an immersion experience close to reality by creating an environment for experiential content necessary for semiconductor and solar cell manufacturing processes and clean room entrance procedure experiential content, which is expected to improve education immersion, realism, cost, efficiency, and education satisfaction. Depending on the characteristics of Dangerous, Impossible, Counter-productive etc, immersive content makes learners immersed in the learning content, induces proactive/active learning, and embodies the learning content, resulting in positive results in the field of improving educational effectiveness.

Basic Design of 40ft Class Pleasure Boat based on Digital Mock-up (디지털 목업 모델 기반 40ft 급 알루미늄 레저보트 설계)

  • Oh, Dae-Kyun;Lee, Kyung-Woo;Lee, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • As leisure boats become large-scaled and high value-added, their design requirements gradually get more complicated and accordingly their manufacturing processes get more complicated than those of existing ones. Leisure boat builders overseas make efforts to overcome this circumstance by establishing a 3-D model-based design system which is based on the concept of PLM. On the other hand, Korean shipbuilders still remain in the development process of traditional leisure boats which are mainly based on 2-D drawings. There have been some efforts made to have the 3-D model-based design system; however, they belong to a very early stage. This study carried out initial research to apply DMU technology to the development process of leisure boats. It established the design process based on a DMU model and proved its usefulness through a case study on the design of 40-ft class aluminum leisure boats.