• Title/Summary/Keyword: 가상압축성

Search Result 84, Processing Time 0.027 seconds

General Steady-State Shape Factors in Analyzing Slug Test Results to Evaluate In-situ Hydraulic Conductivity of Vertical Cutoff Wall (순간변위시험(slug test)시 연직차수벽의 현장투수계수를 산정하기 위한 형상계수 연구)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, Thebao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.105-116
    • /
    • 2011
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results. Recently, an analytical solution to interpret slug tests has been proposed for a partially penetrated well in an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions, the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Two boundary conditions are considered according to the existence of filter cakes: constant head boundary and no flux boundary. Generalized steady-state shape factors are presented for each geometric condition, which can be used for evaluating the in-situ hydraulic conductivity of cutoff walls. The constant head boundary condition provides higher shape factors and no flux boundary condition provides lower shape factors than the infinite aquifer, which enables to adjust the in-situ hydraulic conductivity of the cutoff wall. The hydraulic conductivities calculated from the analytical solution in this paper give about 1.2~1.7 times higher than those from the Bouwer and Rice method, one of the semi-empirical formulas. Considering the compressibility of the backfill material, the analytical solution developed in this study was proved to correspond to the case of incompressible backfill materials.

Evaluation of Soil Parameters Using Adaptive Management Technique (적응형 관리 기법을 이용한 지반 물성 값의 평가)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.

Wyner-Ziv Video Compression using Noise Model Selection (잡음 모델 선택을 이용한 Wyner-Ziv 비디오 압축)

  • Park, Chun-Ho;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.58-66
    • /
    • 2009
  • Recently the emerging demands of the light-video encoder promotes lots of research efforts on DVC (Distributed Video Coding). As an appropriate video compression method, DVC has been studied, and Wyner-Ziv (WZ) video compression is its one representative structure. The WZ encoder splits the image into two kinds of frames, one is key frame which is compressed by conventional intra coding, and the other is WZ frame which is encoded by WZ coding. The WZ decoder decodes the key frame first, and estimates the WZ frame using temporal correlation between key frames. Estimated WZ frame (Side Information) cannot be the same as the original WZ frame due to the absence of the WZ frame information at decoder. As a result, the difference between the estimated and original WZ frames are regarded as virtual channel noise. The WZ frame is reconstructed by removing noise in side information. Therefore precise noise estimation produces good performance gain in WZ video compression by improving error correcting capability by channel code. But noise cannot be estimated precisely at WZ decoder unless there is good WZ frame information, and generally it is estimated from the difference of corresponding key frames. Also the estimated noise is limited by comparing with frame level noise to reduce the uncertainty of the estimation method. However these methods cannot provide good noise estimation for every frame or each bit plane. In this paper, we propose a noise nodel selection method which chooses a better noise model for each bit plane after generating candidate noise models. Experimental result shows PSNR gain up to 0.8 dB.

Lateral-Torsional Buckling Analysis of the Circular Arches Using Unsymmetric Thin-Walled Beam Elements (비대칭(非對稱) 박벽(薄壁)보 요소(要素)를 이용(利用)한 원형(圓形) 아치의 횡좌굴(橫挫屈) 해석(解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.39-52
    • /
    • 1993
  • For the lateral-torsional buckling analysis of the thin-walled space frame and circular arch with the unsymmetric cross section, the tangent stiffness matrices are derived by introducing Vlasov's assumption for the thin-walled beam and using the principle of virtual displacement. In the cases of the unrestrained torsion and the restrained torsion, the elastic and geometric stiffness matrices corresponding to semitangential rotation and semitangential moment are evaluated by using the Hermitian polynomials as the shape function. In order to illustrate the accuracy and convergence characteristics of the derived formulations, numerical examples for the lateral-torsional buckling analysis of the hinged circular arch under pure bending and uniform compression are presented and compared with the analytic solutions of references.

  • PDF

Extraction of Ground Points from LiDAR Data using Quadtree and Region Growing Method (Quadtree와 영역확장법에 의한 LiDAR 데이터의 지면점 추출)

  • Bae, Dae-Seop;Kim, Jin-Nam;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.41-47
    • /
    • 2011
  • Processing of the raw LiDAR data requires the high-end processor, because data form is a vector. In contrast, if LiDAR data is converted into a regular grid pattern by filltering, that has advantage of being in a low-cost equipment, because of the simple structure and faster processing speed. Especially, by using grid data classification, such as Quadtree, some of trees and cars are removed, so it has advantage of modeling. Therefore, this study presents the algorithm for automatic extraction of ground points using Quadtree and refion growing method from LiDAR data. In addition, Error analysis was performed based on the 1:5000 digital map of sample area to analyze the classification of ground points. In a result, the ground classification accuracy is over 98%. So it has the advantage of extracting the ground points. In addition, non-ground points, such as cars and tree, are effectively removed as using Quadtree and region growing method.

Efficient Radio Resource Measurement System in IEEE 802.11 Networks (IEEE 802.11 네트워크에서 효율적인 라디오 자원 측정 시스템 연구)

  • Yang, Seung-Chur;Lee, Sung-Ho;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2437-2445
    • /
    • 2012
  • This paper presents the efficient measurement method of radio resource by analyzing various medium occupied elements. The medium occupied time consists of 802.11 frames, wireless interference, and protocol waiting time from a wireless node on a current channel. And it is used to performance metric. Existing research is only measured partial occupied elements, and is lack of validation of measurement unit and scalability on various IEEE 802.11 radio. This paper presents the measurement method of classified occupied elements. To achieve this, we modified 802.11n based OpenHAL device driver to collect the register information of wireless chipset, and to analyze receiving frames in an virtual monitor mode. We conclude accurate medium occupied time measurement system from various validation methods.

A Study on the Change of Strength of FRP Member Immersed in Chemical Solution (화학약품용액에 침지한 FRP 부재의 강도 변화에 대한 연구)

  • Kim, Ho-Sun;Kim, Woo-Jong;Jang, Hwa-Sup;Kwak, Kae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.117-123
    • /
    • 2010
  • If FRP materials that have been known as high durability materials are exposed to harmful environmental factors, deterioration and characteristics of materials can be reduced due to chemical reaction such as hydrolysis. Therefore, to use FRP materials as building major materials, it is important to exactly grasp dynamic properties by use condition. Accordingly, this study stored FRP materials in a strong acid and alkali compound solution for a certain period to conduct simulation for acute or chronic, extreme changes by chemicals, and conducted a test for compressive, tensile, shear and bending strength to analyze changes in strength by kinds and storage days of chemicals. In conclusion, the study findings indicate excellent chemical resistance of FRP materials.

Real-Time Shadow Generation using Image Warping (이미지 와핑을 이용한 실시간 그림자 생성 기법)

  • Kang, Byung-Kwon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.245-256
    • /
    • 2002
  • Shadows are important elements in producing a realistic image. Generation of exact shapes and positions of shadows is essential in rendering since it provides users with visual cues on the scene. It is also very important to be able to create soft shadows resulted from area light sources since they increase the visual realism drastically. In spite of their importance. the existing shadow generation algorithms still have some problems in producing realistic shadows in real-time. While image-based rendering techniques can often be effective1y applied to real-time shadow generation, such techniques usually demand so large memory space for storing preprocessed shadow maps. An effective compression method can help in reducing memory requirement, only at the additional decoding costs. In this paper, we propose a new image-barred shadow generation method based on image warping. With this method, it is possible to generate realistic shadows using only small sizes of pre-generated shadow maps, and is easy to extend to soft shadow generation. Our method will be efficiently used for generating realistic scenes in many real-time applications such as 3D games and virtual reality systems.

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.

Nonlinear Analysis of Nuclear Reinforced Concrete Containment Structures under Accidental Thermal Load and Pressure (온도 및 내압을 받는 원자로 철근콘크리트 격납구조물의 비선형해석)

  • Oh, Byung Hwan;Lee, Myung Gue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.403-414
    • /
    • 1994
  • Nonlinear analysis of RC containment structure under thermal load and pressure is presented to trace the behaviour after an assumed LOCA. The temperature distribution varying with time through the wall thickness is determined by transient finite element analysis with the two time level scheme in time domain. The layered shell finite elements are used to represent the containment structures in nuclear power plants. Both geometric and material nonlinearities are taken into account in the finite element formulation. The constitutive relation of concrete is modeled according to Drucker-Prager yield criteria in compression. Tension stiffening model is used to represent the tensile behaviour of concrete including bond effect. The reinforcing bars are modeled by smeared layer at the location of reinforcements accounting elasto-plastic axial behaviors. The steel liner model under Von Mises yield criteria is adopted to represent elastic-perfect plastic behaviour. Geometric nonlinearity is formulated to consider the large displacement effect. Thermal stress components are determined by the initial strain concept during each time step. The temperature differential between any two consecutive time steps is considered as a load incremental. The numerical results from this study reveal that nonlinear temperature gradient based on transient thermal analysis will produces excessive large displacement. Nonlinear behavior of containment structures up to ultimate stage can be traced reallistically. The present study allows more realistic analysis of concrete containment structures in nuclear power plants.

  • PDF