• Title/Summary/Keyword: 가상고정점 모델 해석

Search Result 8, Processing Time 0.02 seconds

Application of Virtual Fixed Point Theory and Discrete Analysis for Pile Bent Structures (단일 현장타설말뚝의 가상고정점 설계 및 분리해석 적용성 평가)

  • Kim, Jae-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.57-74
    • /
    • 2013
  • In this study, the virtual fixed point analysis and 3D full-modeling analysis for pile bent structures are conducted by considering various influencing factors and the applicability of the virtual fixed point theory is discussed. Also, a discrete analysis calculating separately both the superstructure and substructure of pile bent structures is performed on the basis of an equivalent base spring model by taking into account the major influencing parameters such as soil conditions, combined loading and pile diameter. The results show that the settlement and lateral deflection of the virtual fixed point theory are smaller than those of 3D full-modeling analysis. On the other hand, the virtual fixed point analysis overestimates the axial force and bending moment compared with 3D full-modeling analysis. It is shown that the virtual fixed point analysis cannot adequately predict the real behavior of pile bent structures. It is also found that discrete analysis gives similar results of lateral deflection and bending moment to those of unified analysis. Based on this study, it is found that discrete analysis considering column-pile interaction conditions is capable of predicting reasonably well the behavior of pile bent structures. It can be effectively used to perform a more economical design of pile bent structures.

A Study of Soil Spring Model Considering the Seismic Load in Response Spectrum Analysis of Pile-Supported Structure (잔교식 말뚝 구조물의 응답스펙트럼해석 시 지진하중을 고려한 지반 스프링 모델 제안)

  • Yun, Jung-Won;Kim, Jongkwan;Lee, Seokhyung;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.5-17
    • /
    • 2022
  • Recently, several studies have been conducted on virtual fixed-point and elastic soil spring methods to simulate the soil-pile interaction in response to spectrum analysis of pile-supported structures. However, the soil spring stiffness has not been properly considered due to the seismic load magnitude, and studies on the response spectrum analysis of pile-supported structures considering this circumstance are inadequate. Therefore, in this study, the response spectrum analysis was performed considering the soil spring stiffness according to the seismic load magnitude, and the dynamic behavior of the pile-supported structure was evaluated by comparing it with existing virtual fixed-point and elastic soil spring methods. Comparing the experiment and analysis, the moment differences occurred up to 117% and 21% in the virtual fixed-point and elastic soil spring models, respectively. Moreover, when the analysis was performed using an API p-y curve considering the soil spring stiffness according to the seismic load magnitude, the moment difference between the experiment and analysis was derived at a maximum of < 4%, and it is the most accurate method to simulate the experimental model response.

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

Finite Difference Stability Analysis of Anisotropic Plates with Free Edge (자유경계를 갖는 비등방성 판의 유한차분 안정성 해석)

  • Yoo, Yong Min;Lee, Sang Youl;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.221-230
    • /
    • 2000
  • Checking the stability of anisotropic plates with free edges, it is impossible that buckling loads and modes are found via existing classical methods about various loads and boundary conditions. For solving this problems. finite difference method(FDM) is used to analyze the buckling behaviors for arbitrary boundary conditions. Using FDM, it is difficult to treat the fictitious points on free edges. So, this paper analyzes buckling behaviors of analytic models with one edge free and the other edges clamped and with opposite two edges free and other two edges clamped. The various buckling loads and mode characteristics through numerical results are given for buckling behaviors of anisotropic plates on free edges.

  • PDF

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.

Seismic performance evaluation of Pier-Shafts system with multi-layered soil (다양한 지반층을 갖는 Pier-Shafts 시스템의 내진성능평가)

  • Jang, Sung-Hwan;Nam, Sang-Hyeok;Song, Ha-Won;Kim, Byung-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.69-72
    • /
    • 2008
  • The so-called Pier-Shafts system which consists of the continuous column and shaft is often used to support the highway bridge structure because of advantages in easy construction and low cost. In the earthquake region, the Pier-Shafts system undergoes large displacements and represents a nonlinear behavior under the lateral seismic loading. The soil-pile interaction should be considered for more accurate analysis of the Pier-Shafts system. In this study, a transverse response of a reinforced concrete Pier-Shafts system inside multi-layered soil medium is predicted using a finite element program which adopts an elasto-plastic interface model for the interface behavior between the shaft and the soil. Then, seismic analysis is performed to evaluate the performance of Pier-Shafts system under strong ground motion and their results are verified with experimental data.

  • PDF

Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil (사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Kwak, Yeon Min;Park, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.421-430
    • /
    • 2013
  • To predict behaviors of offshore wind turbines which are highly laterally loaded structures and to design them rationally, evaluating the soil-foundation interaction is important. Nowadays, there are many soil modeling methods for structural analysis of general structures subjected to vertical loads, but using the methods without any consideration for design of a monopile foundation is eschewed because it might cause wrong structural design due to the deferent loading state. In this paper, we identify the differences of the member forces and displacements by design methods. The results show that fixed end method is barely suitable for monopile design in terms of checking the serviceability because it underestimate the lateral displacement. Fixed end method and stiffness matrix method underestimate the member forces, whereas virtual fixed end method overestimates them. The results of p-y curve method and coefficient of subgrade reaction method are similar to the results of 3D soil modeling method, and 2D soil modeling method overestimates the displacement and member forces as compared with other methods.

Simplified Analysis of Pile Bent Structures and Minimum Reinforcement Ratio (단일 현장타설말뚝의 간편해석 및 최소 철근비 분석)

  • Kim, Jae-Young;Hwang, Taik-Jean;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.33-43
    • /
    • 2011
  • In this study, simplified analysis (discrete analysis of column and pile) of pile bent structures was performed on the basis of the equivalent base spring model. And the minimum reinforcement ratio in pile bent structures was evaluated by taking into account various factors. To obtain the detailed information, simplified analysis was performed for column-pile interactions and the behavior of a column-pile was estimated and highlighted. Based on this study, it is shown that previous design method based on virtual fixed point theory cannot adequately predict the physical behavior of pile bent structures. It is found that the maximum bending moment is located within craking moment of the pile when material non-linearity is considered. It is also found that the minimum reinforcement ratio (=0.4%) is appropriately applicable for the optimal design of pile bent structure under ultimate lateral loading.