• Title/Summary/Keyword: 가변전열 히트파이프

Search Result 10, Processing Time 0.023 seconds

Experimental Study of Heat Transfer Performance of Variable Conductance Heat Pipe with Screen Mesh Wick (Mesh Wick형 가변전열 히트파이프의 열전달 성능에 관한 실험적 연구)

  • Park, Y.S.;Byon, G.S.;Suh, J.S.;Park, K.H.;Lee, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.7-12
    • /
    • 2003
  • heat pipe with screen meshed wick. The heat pipe was designed in 200 screen meshs, 500 mm length and 12mm O.D tube of copper, water as working fluid and nitrogen as non-condensible gas. Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of wall temperature distribution along axial length is presented for heat transport capacity, condensor cooling water temperature change, degrees of an inclination angle, and operating temperature.

  • PDF

Analysis of Thermal Control Performance of Variable Conductance Heat Pipe with Axial Grooves (축방향 그루브형 가변전열 히트파이프의 열제어 특성)

  • Park, Y.S.;Kim, D.E.;Byon, G.S.;Suh, J.S.;Lee, K.W.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1651-1656
    • /
    • 2003
  • The present study has been conducted to analytically investigate the thermal control performance of variable conductance heat pipe(YCHP) with axial grooves. The condenser port of the YCHP is occupied by a inert gas in which the concentration of gas is varied with the operation temperature and the heat transport capacity is thus varied with the operating temperature due to the variation of inert gas concentration. In this study, numerical evaluation for the thermal control of the YCHP with axial grooves is made from the 1st order diffusion model that considers the diffusive expansion of inert gas by concentration gradient. Ammonia is used as a working fluid and Nitrogen as a control gas in the Aluminum tube. As a result, the thermal performance of YCHP based on diffusion model has been compared with that of YCHP from flat front model. Additionally, it is found that the concentration of inert gas is distributed in the condenser region of YCHP with axial grooves.

  • PDF

Influence of NCG Charging Mass on the Thermal Characteristics of Variable Conductance Heat Pipe with Screen Mesh Wick (스크린 메쉬형 가변전열 히트파이프에서 NCG양에 따른 작동특성 변화)

  • Suh, J.S.;Park, Y.S.;Kang, C.H.;Chung, K.T.;Park, K.H.;Lee, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1400-1405
    • /
    • 2004
  • Experimental study is performed to investigate the effect of heat load and operating temperature on the thermal performance of a heat pipe with screen mesh wick. The heat pipe was designed in 200 screen meshes, 500mm length and 12.7mm O.D tube of copper, water as working fluid(4.8g) and nitrogen as non-condensible gas(NCG). The heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of axial wall temperature distribution is presented for heat transport capacity, the temperature of cooling water of condenser, inclination angle, and operating temperature. For the results from this study, it is found that, for the same charging mass of working fluid, the initial operating temperature and the overall wall temperatures of heat pipe are higher for NCG charging mass of $5.0{\times}10^{-6}kg$ and $3.4{\times}10^{-6}kg$, than that of $1.0{\times}10^{-6}kg$.

  • PDF

A study on the characteristics of a frozen start up for a variable conductance heat pipe (가변전열 히트파이프의 저온 시동특성에 관한 연구)

  • Hong, Sung-Eun;Kang, Hwan-Kook;Cho, Kwang-Cheal
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.339-345
    • /
    • 2006
  • This these was conducted to investigate tile characteristics of a frozen start up for a VCHP which has water as a working fluid and Nitrogen as a non-condensible gas. The tested heat pipe was made of a copper tube with the outer diameter of 12.7 mm, the length of 340 mm, and the sintered metal wick had the thickness of 0.7 mm. This experiment was conflicted under the thermal load, inclined angle and cooling conditions.

  • PDF

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

A Study on the Chilling Start-up Characteristics and Performance of a Gas Loaded Heat Pipe (가스내장 히트파이프의 냉시동특성과 성능에 관한 연구)

  • Hong, Sung-Eun;Kang, Hwan-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.915-922
    • /
    • 2006
  • Considering heat pipe design principles in fabrication and operational performances, water is one of the most recommended working fluids to make mid to low tempera lure heat pipes. But the conventional water heat pipes might encounter the failure in a cold start-up operation when socked at a chilling temperature lower than the freezing point. If they are subjected to a heat supply for start-up at a temperature around $-20^{\circ}C$, the rate of the vapor flow and the corresponding heat transfer from the evaporator to the condenser is so small that the vapor keeps to stick on the surface of the chilling condenser wall, forming an ice layer, resulting in a liquid deficiency in the evaporator. This kind of problems was resolved by Kang et al. in 2004 by adopting a gas loading heat pipe technology to the conventional water heat pipes. This study was conducted to examine a chilling start-up procedure of gas loading heat pipes by investigating the behaviors of heat pipe wall temperatures. And the thermal resistance of the gas loaded heat pipe that depends on the operating temperatures and heat loads was measured and examined. Two water heat pipes were designed and fabricated for the comparison of performances, one conventional and the other loaded with $N_2$ gas. They were put on start-up test at a heat supply of 30 W after having been socked at an initial temperature around $-20^{\circ}C$. It was observed that the gas loaded one had succeeded in chilling start-up operation.

An Experimental Study on the affect of Non-condensable Gas Quantity on the Heat Transfer Performances in a Variable Conductance Heat Pipe (VCHP에서 불응축 가스량이 열전달 성능에 미치는 영향에 관한 실험적 연구)

  • Park, K.H.;Lee, K.W.;Lee, W.H.;Lee, K.J.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.19-24
    • /
    • 2003
  • This paper is to research the heat transfer characteristic in copper-water variable conductance heat pipes(VCHP) with a non-condensable gas and gas reservoir. The heat transfer characteristics in the VCHP have not yet been studied much researches. VCHP are used in many applications. These applications range from thermal control of components and systems on satellites, to precise temperature calibration duties, conventional electronics temperature control and thermal diodes. The practical use of VCHP is a simple way to control the temperature of satellites. As the quantity of NCG was increased, there was an increase in the saturation vapor temperatures. As the input heat has loaded from 90 W to 110 W, the difference of the evaporator surface is lower than $10^{\circ}C$.

  • PDF

Influence of NCG Charged Mass on the Thermal Performance of VCHP with Screen Mesh Wick (스크린메쉬형 VCHP에서 NCG량에 따른 열전달 성능실험)

  • Park, Young-Sik;Chung, Kyung-Taek;Suh, Jeong-Se
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.689-695
    • /
    • 2008
  • Experimental study has been performed to investigate the influence of non-condensible gas(NCG) charged mass on the thermal performance of a variable conductance heat pipe(VCHP) with screen mesh wick. The VCHP is furnished by screen mesh number 200 for the pipe outer diameter of 12.7mm and the pipe length of 500 mm. The VCHP is filled with water as working fluid of 4.8g and nitrogen as NCG and has evaporator, condenser and adiabatic section, respectively. For the results from experiment, it is found that, for the same charged mass of working fluid, the overall wall temperatures of heat pipe grows up with increasing NCG charged mass. The variation of operating temperature of VCHP reduces with increasing NCG mass. In addition, the profile of axial wall temperature distribution is presented for heat transport capacity of heat pipe, the temperature of cooling water of condenser, inclination angle, and operating temperature.

Analysis of Thermal Control Characteristics of VCHP by the Charging Mass of Non-Condensible Gas (불응축가스 주입량에 따른 VCHP의 열제어 특성)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1139-1144
    • /
    • 2005
  • This study has been performed to investigate the thermal performance of variable conductance heat pipe (VCHP) with meshed wick. The length of condenser portion in a VCHP is varied by the expansion of inert gas with the operation temperature, and the heat transport capacity is thus varied with the operating temperature. In this study, numerical evaluation of the VCHP is made for the thermal performance of VCHP, based on the diffusion model of inert gas. Water is used as a working fluid and nitrogen as a control inert gas in the copper tube. As a result, the thermal performance of VCHP has been compared with that of constant conductance heat pipe (CCHP) according to the variation of operation temperature. Maximum heat transport capacity of VCHP is mainly presented for operation temperature and the variation of operation temperature is also presented for heat transfer rate of VCHP.