• Title/Summary/Keyword: 가변속 풍력발전기

Search Result 36, Processing Time 0.018 seconds

A Study on Optimal Operation Method of Multiple Microgrid System Considering Line Flow Limits (선로제약을 고려한 복수개의 마이크로그리드 최적운영 기법에 관한 연구)

  • Park, Si-Na;An, Jeong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.258-264
    • /
    • 2018
  • This paper presents application of a differential search (DS) meta-heuristic optimization algorithm for optimal operation of a micro grid system. The DS algorithm simulates the Brownian-like random-walk movement used by an organism to migrate. The micro grid system consists of a wind turbine, a diesel generator, a fuel cell, and a photovoltaic system. The wind turbine generator is modeled by considering the characteristics of variable output. Optimization is aimed at minimizing the cost function of the system, including fuel costs and maximizing fuel efficiency to generate electric power. The simulation was applied to a micro grid system only. This study applies the DS algorithm with excellence and efficiency in terms of coding simplicity, fast convergence speed, and accuracy in the optimal operation of micro grids based on renewable energy resources, and we compared its optimum value to other algorithms to prove its superiority.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Comparison of Characteristics for Variable Operation using Doubly-fed Induction Generator and Fixed Speed Operation in Wind Turbine System (이중여자 유도발전기를 이용한 가변속운전과 정속운전 풍력발전시스템의 운전특성 비교)

  • Ro, Kyoung-Soo;Kim, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1313-1320
    • /
    • 2009
  • This paper analyzes the steady-state operating characteristics of doubly-fed induction generator(DFIG) and fixed-speed induction generator(FSIG) in wind turbine system. It also presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, 3-phase fault and 1-phase ground fault of the network. Simulation results show the variations of generator's active/reactive output, rotor speed, terminal voltage, fault current, etc. Case studies demonstrate that DFIG illustrates better performance compared to FSIG.

LVRT Control Strategy of Grid-connected Wind Power System (계통 연계형 풍력 발전 시스템의 LVRT 제어 전략)

  • Shin, Ho-Joon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • This paper proposes a LVRT (Low Voltage Ride Through) control strategy which should be satisfied by grid-connected wind power system when grid faults occur. The LVRT regulation indicates rules or actions which have to be executed according to the voltage dip ratio and the fault duration. Especially the wind power system has to support the grid with specified reactive current to secure the grid stability when voltage reduction ratio is over 10%. The LVRT regulation in this paper is based on the German Grid Code and full-scale variable speed wind power conversion system is considered for LVRT control strategy. The proposed LVRT control strategy satisfies not only LVRT regulation but also makes power balance between wind turbine and power system through additional DC link voltage regulation algorithms. Because it is impossible to control grid side power when the 3-phase to ground fault occurs, the DC link voltage is controlled by a generator side inverter using the DC link voltage control strategy. Through the simulation and experiment result, the proposed LVRT control strategy is evaluated and its effectiveness is verified.

Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators (이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석)

  • Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

Improved Frequency Mitigation of a Variable-Speed Wind Turbine (개선된 가변속 풍력발전기의 주파수 평활화)

  • Li, Mingguang;Yang, Dejian;Kang, Yong Cheol;Hong, Junhee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.695-701
    • /
    • 2018
  • For a power grid that has a high wind penetration level, when wind speeds are continuously fluctuating, the maximum power point tracking (MPPT) operation of a variable-speed wind turbine (VSWT) causes the significant output power fluctuation of a VSWT, thereby significantly fluctuating the system frequency. In this paper, an improved power-smoothing scheme of a VSWT is presented that significantly mitigates the frequency fluctuation caused by varying wind speeds. The proposed scheme employs an additional control loop based on the frequency deviation that operates in combination with the MPPT control loop. To improve the power-smoothing capability of a VSWT in the over-frequency section (OFS), the control gain of the additional loop, which is set to be inversely proportional to the rotor speed, is proposed. In contrast, the control gain in the under-frequency section is set to be proportional to the rotor speed to improve the power-smoothing capability while avoiding over-deceleration of the rotor speed of a VSWT. The proposed scheme significantly improves the performance of the power-smoothing capability in the OFS, thereby smoothing the frequency fluctuation. The results clearly demonstrate that the proposed scheme significantly mitigates the frequency fluctuation by employing the different control gain for the OFS under various wind penetration scenarios.