• Title/Summary/Keyword: 가버 웨이블렛

Search Result 4, Processing Time 0.021 seconds

Automatic TFT-LCD Mura Defect Detection using Gabor Wavelet Transform and DCT (가버 웨이블렛 변환 및 DCT를 이용한 자동 TFT-LCD 패널 얼룩 검출)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.525-534
    • /
    • 2013
  • Recently, mura defect inspection techniques are receiving attention in LCD production procedure since demands of TFT-LCD are growing. In this paper, we propose an automatic mura defect inspection method using gabor wavelet transform and DCT. First, we generate a reference panel image using DCT based method. For original panel image and generated reference panel image, we apply a gabor wavelet transform to eliminate texture information in images. Then, we extract mura defect regions from the difference image between gabor wavelet transform image of original panel and generated reference panel image. Finally, all mura defect regions are quantified to detect accurate mura defects. Experimental results show that our method is more accurate and efficient than previous methods.

Eye Localization based on Multi-Scale Gabor Feature Vector Model (다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Oh, Du-Sik;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported thus far still need to be improved about precision and computational time for successful applications. In this paper, we propose an improved eye localization method based on multi-scale Gator feature vector models. The proposed method first tries to locate eyes in the downscaled face image by utilizing Gabor Jet similarity between Gabor feature vector at an initial eye coordinates and the eye model bunch of the corresponding scale. The proposed method finally locates eyes in the original input face image after it processes in the same way recursively in each scaled face image by using the eye coordinates localized in the downscaled image as initial eye coordinates. Experiments verify that our proposed method improves the precision rate without causing much computational overhead compared with other eye localization methods reported in the previous researches.

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Smart Card User Identification Using Low-sized Face Feature Information (경량화된 얼굴 특징 정보를 이용한 스마트 카드 사용자 인증)

  • Park, Jian;Cho, Seongwon;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2014
  • PIN(Personal Identification Number)-based identification method has been used to identify the user of smart cards. However, this type of identification method has several problems. Firstly, PIN can be forgotten by owners of the card. Secondly, PIN can be used by others illegally. Furthermore, the possibility of hacking PIN can be high because this PIN type matching process is performed on terminal. Thus, in this paper we suggest a new identification method which is performed on smart card using face feature information. The proposed identification method uses low-sized face feature vectors and simple matching algorithm in order to get around the limits in computing capability and memory size of smart card.