• Title/Summary/Keyword: 가뭄 전이

Search Result 259, Processing Time 0.028 seconds

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

Identification of multiple key genes involved in pathogen defense and multi-stress tolerance using microarray and network analysis (Microarray와 Network 분석을 통한 병원균 및 스트레스 저항성 관련 주요 유전자의 대량 발굴)

  • Kim, Hyeongmin;Moon, Suyun;Lee, Jinsu;Bae, Wonsil;Won, Kyungho;Kim, Yoon-Kyeong;Kang, Kwon Kyoo;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.347-358
    • /
    • 2016
  • Brassinosteroid (BR), a plant steroid hormone, plays key roles in numerous growth and developmental processes as well as tolerance to both abiotic and biotic stress. To understand the biological networks involved in BR-mediated signaling pathways and stress tolerance, we performed comparative genome-wide transcriptome analysis of a constitutively activated BR bes1-D mutant with an Agilent Arabidopsis $4{\times}44K$ oligo chip. As a result, we newly identified 1,091 (562 up-regulated and 529 down-regulated) significant differentially expressed genes (DEGs). The combination of GO enrichment and protein network analysis revealed that stress-related processes, such as metabolism, development, abiotic/biotic stress, immunity, and defense, were critically linked to BR signaling pathways. Among the identified gene sets, we confirmed more than a 6-fold up-regulation of NB-ARC and FLS2 in bes1-D plants. However, some genes, including TIR1, TSA1 and OCP3, were down-regulated. Consistently, BR-activated plants showed higher tolerance to drought stress and pathogen infection compared to wild-type controls. In this study, we newly developed a useful, comprehensive method for large-scale identification of critical network and gene sets with global transcriptome analysis using a microarray. This study also showed that gain of function in the bes1-D gene can regulate the adaptive response of plants to various stressful conditions.

Evaluation of Future Water Deficit for Anseong River Basin Under Climate Change (기후변화를 고려한 안성천 유역의 미래 물 부족량 평가)

  • Lee, Dae Wung;Jung, Jaewon;Hong, Seung Jin;Han, Daegun;Joo, Hong Jun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • The average global temperature on Earth has increased by about $0.85^{\circ}C$ since 1880 due to the global warming. The temperature increase affects hydrologic phenomenon and so the world has been suffered from natural disasters such as floods and droughts. Therefore, especially, in the aspect of water deficit, we may require the accurate prediction of water demand considering the uncertainty of climate in order to establish water resources planning and to ensure safe water supply for the future. To do this, the study evaluated future water balance and water deficit under the climate change for Anseong river basin in Korea. The future rainfall was simulated using RCP 8.5 climate change scenario and the runoff was estimated through the SLURP model which is a semi-distributed rainfall-runoff model for the basin. Scenario and network for the water balance analysis in sub-basins of Anseong river basin were established through K-WEAP model. And the water demand for the future was estimated by the linear regression equation using amounts of water uses(domestic water use, industrial water use, and agricultural water use) calculated by historical data (1965 to 2011). As the result of water balance analysis, we confirmed that the domestic and industrial water uses will be increased in the future because of population growth, rapid urbanization, and climate change due to global warming. However, the agricultural water use will be gradually decreased. Totally, we had shown that the water deficit problem will be critical in the future in Anseong river basin. Therefore, as the case study, we suggested two alternatives of pumping station construction and restriction of water use for solving the water deficit problem in the basin.

Effect of Miscanthus Biomass Application on Upland Soil Physicochemical Properties and Crops Growth (억새 바이오매스 시용이 밭토양 이화학성과 작물 생육에 미치는 영향)

  • Kang, Yong Ku;Moon, Youn Ho;Kwon, Da Eun;Lee, Ji Eun;Kim, Kwang Soo;Cha, Young Lok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • In this study, miscanthus with C/N ratio of 224 were applied to the soil and treated with 0 (control), 10 tons and 20 tons·ha-1 to improve the soil and promote crop growth. As a result, soil organic matter content increased from 11.0 g·kg-1 before the test to 16.3 after 3 years. Soil cation exchangeable capacity increased to 15.3 cmolc·kg-1 after 3 years. In the sweet sorghum, stem was the most thickest at 20 tons·ha-1 application of miscanthus and the highest juice amount per plant was 60 ml. The yield index multiplied by the soluble solids content of juice and juice amount was the highest at 1,913 for 10 tons application and 1,851, 1,839 for 20 tons, control respectively. Number of sweetpotato storage root were 2,9 in 20-tons application plot, the same as control, and 10-tons application plot was 3.6, the most. Two-year average yields of 20 tons plot and control were low at 2,579 kg/10a and 2,708 respectively, and 10 tons plot was the highest at 3,289. For onions, the biomass application did not effect the yield. but onion plant and leaf length were longer in 20 tons plot than in control or 10 tons. The yield of garlic was 2,630~2,901 kg/10a and there was no effect of miscanthus application. Plot of 10 tons application were the longest in plant and leaf length, and the number of scale was 8.2-8.3 per in bulb, and 8.9 tons·ha-1 in control. Therefore, it was confirmed the possibility that miscanthus biomass application of about 10 tons·ha-1 could improve the soil condition and promote crops growth and yield.

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.

Change in Yield and Quality Characteristics of Rice by Drought Treatment Time during the Seedling Stage (벼 이앙 직후 유묘기 한발 피해시기에 따른 수량 및 미질 특성 변화)

  • Jo, Sumin;Cho, Jun-Hyeon;Lee, Ji-Yoon;Kwon, Young-Ho;Kang, Ju-Won;Lee, Sais-Beul;Kim, Tae-Heon;Lee, Jong-Hee;Park, Dong-Soo;Lee, Jeom-Sig;Ko, Jong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.344-352
    • /
    • 2019
  • Drought stress caused by global climate change is a serious problem for rice cultivation. Increasingly frequent abnormal weather occurrences could include severe drought, which could cause water stress to rice during the seedling stage. This experiment was conducted to clarify the effects of drought during the seedling period on yield and quality of rice. Drought conditions were created in a rain shelter house facility. The drought treatment was conducted at 3, 10, and 20 days after transplanting. Soil water content was measured by a soil moisture sensor during the whole growth stage. In this study, we have chosen 3 rice cultivars which are widely cultivated in Korea: 'Haedamssal' (Early maturing), 'Samkwang' (Medium maturing), and 'Saenuri' (Mid-late maturing). The decrease in yield due to drought treatment was most severe 3 days after transplanting because of the decrease in the number of effective tillers. The decrease in grain quality due to drought treatment was also most severe 3 days after transplanting because of the increased protein content and hardness of the grains. The cultivar 'Haedamssal' was the most severely damaged by water stress, resulting in about a 30% yield loss. Drought conditions diminished the early vigorous growth period and days to heading in early-maturing cultivars. The results show that drought stress affects yield components immediately after transplanting, which is a decisive factor in reducing yield and grain quality. This study can be used as basic data to calculate damage compensation for drought damage on actual rice farms.

Analysis of Climate Change Researches Related to Water Resources in the Korean Peninsula (한반도 수자원분야 기후변화 연구동향 분석)

  • Lee, Jae-Kyoung;Kim, Young-Oh;Kang, Noel
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The global warming is probably the most significant issue of concern all over the world and according to the report published by the Intergovernmental Panel on Climate Change (IPCC), the average temperature and extent of global warming around the globe have been on the rise and so have the uncertainty for the future. Such effects of global warming have adverse effects on basic foundation of the mankind in numerous ways and water resource is no exception. The researches on water resources assessment for climate change are significant enough to be used as the preliminary data for researches in other fields. In this research, a total of 124 peer-reviewed publications and 57 reports on the subject of research on climate change related to water resources, that has been carried out so far in Korea has been reviewed. The research on climate change in Korea (inclusive of the peer-reviewed articles and reports) has mainly focused on the future projection and assessment. In the fields of hydrometeorology tendency and projection, the analysis has been carried out with focus on surface water, flood, etc. for hydrological variables and precipitation, temperature, etc. for meteorological variables. This can be attributed to the large, seasonal deviation in the amount of rainfall and the difficulty of water resources management, which is why, the analysis and research have been carried out with focus on those variables such as precipitation, temperature, surface water, flood, etc. which are directly related to water resources. The future projection of water resources in Korea may differ from region to region; however, variables such as precipitation, temperature, surface water, etc. have shown a tendency for increase; especially, it has been shown that whereas the number of casualties due to flood or drought decreases, property damage has been shown to increase. Despite the fact that the intensity of rainfall, temperature, and discharge amount are anticipated to rise, appropriate measures to address such vulnerabilities in water resources or management of drainage area of future water resources have not been implemented as yet. Moreover, it has been found that the research results on climate change that have been carried out by different bodies in Korea diverge significantly, which goes to show that many inherent uncertainties exist in the various stage of researches. Regarding the strategy in response to climate change, the voluntary response by an individual or a corporate entity has been found to be inadequate owing to the low level of awareness by the citizens and the weak social infrastructure for responding to climate change. Further, legal or systematic measures such as the governmental campaign on the awareness of climate change or the policy to offer incentives for voluntary reduction of greenhouse gas emissions have been found to be insufficient. Lastly, there has been no case of any research whatsoever on the anticipated effects on the economy brought about by climate change, however, there are a few cases of on-going researches. In order to establish the strategy to prepare for and respond to the anticipated lack of water resources resulting from climate change, there is no doubt that a standardized analysis on the effects on the economy should be carried out first and foremost.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

The History of the Development of Meteorological Related Organizations with the 60th Anniversary of the Korean Meteorological Society - Universities, Korea Meteorological Administration, ROK Air Force Weather Group, and Korea Meteorological Industry Association - (60주년 (사)한국기상학회와 함께한 유관기관의 발전사 - 대학, 기상청, 공군기상단, 한국기상산업협회 -)

  • Jae-Cheol Nam;Myoung-Seok Suh;Eun-Jeong Lee;Jae-Don Hwang;Jun-Young Kwak;Seong-Hyen Ryu;Seung Jun Oh
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.275-295
    • /
    • 2023
  • In Korea, there are four institutions related to atmospheric science: the university's atmospheric science-related department, the Korea Meteorological Administration (KMA), the ROK Air Force Weather Group, and the Meteorological Industry Association. These four institutions have developed while maintaining a deep cooperative relationship with the Korea Meteorological Society (KMS) for the past 60 years. At the university, 6,986 bachelors, 1,595 masters, and 505 doctors, who are experts in meteorology and climate, have been accredited by 2022 at 7 universities related to atmospheric science. The KMA is carrying out national meteorological tasks to protect people's lives and property and foster the meteorological industry. The ROK Air Force Weather Group is in charge of military meteorological work, and is building an artificial intelligence and space weather support system through cooperation with universities, the KMA, and the KMS. Although the Meteorological Industry Association has a short history, its members, sales, and the number of employees are steadily increasing. The KMS greatly contributed to raising the national meteorological service to the level of advanced countries by supporting the development of universities, the KMA, the Air Force Meteorological Agency, and the Meteorological Industry Association.