• Title/Summary/Keyword: 가려지지 않은 물체

Search Result 4, Processing Time 0.016 seconds

Unoccluded Cylindrical Object Pose Measurement Using Least Square Method (최소자승법을 이용한 가려지지 않은 원통형 물체의 자세측정)

  • 주기세
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.167-174
    • /
    • 1998
  • This paper presents an unoccluded cylindrical object pose measurement using a slit beam laser in which a robot recognizes all of the unoccluded objects from the top of jumbled objects, and picks them up one by one. The elliptical equation parameters of a projected curve edge on a slice are calculated using LSM. The coefficients of standard elliptical equation are compared with these parameters to estimate the object pose. The hamming distances between the estimated coordinates and the calculated ones are extracted as measures to evaluate a local constraint and a smoothing surface curvature. The edges between slices are linked using error function based on the edge types and the hamming distances. The linked edges on slices are compared with the model object's length to recognize the unoccluded object. This proposed method may provide a solution to the automation of part handling in manufacturing environments such as punch press operation or part assembly.

  • PDF

Real-Time Motion Blur using Approximated Motion Trails (이동궤적 근사 다면체를 이용한 실시간 모션블러 기법)

  • Hong, MinhPhuoc;Choi, Jinhyung;Oh, Kyoungsu
    • Journal of Korea Game Society
    • /
    • v.17 no.1
    • /
    • pp.17-26
    • /
    • 2017
  • Several algorithms have been introduced to render motion blur in real time by solving the visibility problem in the spatio-temporal domains. However, some algorithms render at interactive frame rates but have artifacts or noise. Therefore, we propose a new algorithm that renders real-time motion blur using extruded triangles. Our method uses two triangles in the previous and the current frame to make an extruded triangle then send it to the rasterization. To solve the occlusion between extruded triangles for a given pixel, we introduce a combining solution using a sorting in front to back order and bitwise operations in the spatio-temporal dimensions.

Bin-Picking Method Using Laser (레이저를 이용한 Bin-Picking 방법)

  • Joo, Kisee;Han, Min-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.156-166
    • /
    • 1995
  • This paper presents a bin picking method using a slit beam laser in which a robot recognizes all of the unoccluded objects from the top of jumbled objects, and picks them up one by one. Once those unoccluded objects are removed, newly developed unoccluded objects underneath are recognized and the same process is continued until the bin gets empty. To recognize unoccluded objects, a new algotithm to link edges on slices which are generated by the orthogonally mounted laser on the xy table is proposed. The edges on slices are partitioned and classified using convex and concave function with a distance parameter. The edge types on the neighborhood slices are compared, then the hamming distances among identical kinds of edges are extracted as the features of fuzzy membership function. The sugeno fuzzy integration about features is used to determine linked edges. Finally, the pick-up sequence based on MaxMin theory is determined to cause minimal disturbance to the pile. This proposed method may provide a solution to the automation of part handling in manufacturing environments such as in punch press operation or part assembly.

  • PDF

Effective Detection of Target Region Using a Machine Learning Algorithm (기계 학습 알고리즘을 이용한 효과적인 대상 영역 분할)

  • Jang, Seok-Woo;Lee, Gyungju;Jung, Myunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.697-704
    • /
    • 2018
  • Since the face in image content corresponds to individual information that can distinguish a specific person from other people, it is important to accurately detect faces not hidden in an image. In this paper, we propose a method to accurately detect a face from input images using a deep learning algorithm, which is one of the machine learning methods. In the proposed method, image input via the red-green-blue (RGB) color model is first changed to the luminance-chroma: blue-chroma: red-chroma ($YC_bC_r$) color model; then, other regions are removed using the learned skin color model, and only the skin regions are segmented. A CNN model-based deep learning algorithm is then applied to robustly detect only the face region from the input image. Experimental results show that the proposed method more efficiently segments facial regions from input images. The proposed face area-detection method is expected to be useful in practical applications related to multimedia and shape recognition.