• Title/Summary/Keyword: 가공 표면

Search Result 1,883, Processing Time 0.033 seconds

Influence of Punch Velocity on Gas Hydrogen Embrittlement Behaviors in SA372 Steel (압력용기용 강의 가스수소 취화 거동에 미치는 펀치속도의 영향)

  • Bae, Kyung-Oh;Shin, Hyung-Seop;Baek, Un-Bong;Nahm, Seung-Hoon;Park, Jong-Seo;Lee, Hae-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1497-1502
    • /
    • 2013
  • When using hydrogen gas as an ecofriendly energy sources, it is necessary to conduct a safety assessment and ensure thereliability of the hydrogen pressure vessel against hydrogen embrittlement expected in the steel materials. In this study, by applying the in-situ SP test method, the gas hydrogen embrittlement behaviors in SA372 steel, which is commonly used as a pressurized hydrogen gas storage container, were evaluated. To investigate the hydrogen embrittlement behavior, SP tests at different punch velocities were conducted for specimens with differently fabricated surfaces at atmospheric pressure and under high-pressure hydrogen gas conditions. As a result, the SA372 steel showed significant hydrogen embrittlement under pressurized hydrogen gas conditions. The effect of punch velocity on the hydrogen embrittlement appeared clearly; the lower punch velocity case indicated significant hydrogen embrittlement resulting in lower SP energy. The fractographic morphologies observed after SP test also revealed the hydrogen embrittlement behavior corresponding to the punch velocity adopted. Under this pressurized gas hydrogen test condition, the influence of specimen surface condition on the extent of hydrogen embrittlement could not be determined clearly.

Characteristics and Preparation of Calcium Acetate from Butter Clam (Saxidomus purpuratus) Shell Powder by Response Surface Methodology (반응표면분석법을 이용한 개조개(Saxidomus purpuratus) 패각분말로부터 가용성 초산칼슘의 제조 및 특성)

  • Lee, Hyun Ji;Jung, Nam Young;Park, Sung Hwan;Song, Sang Mok;Kang, Sang In;Kim, Jin-Soo;Heu, Min Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.888-895
    • /
    • 2015
  • For effective utilization of butter clam shell as a natural calcium resource, the optimal conditions for preparation of calcium acetate (BCCA) with high solubility were determined using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility, and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratio of calcined powder (BCCP) from butter clam shell led to reduction of solubility, yield, color values, and overall quality. Critical values of multiple response optimization to independent variables were 2.70 M and 1.05 M for acetic acid and BCCP, respectively. The actual values (pH 7.04, 93.0% for solubility and 267.5% for yield) under optimization conditions were similar to predicted values. White indices of BCCAs were in the range of 89.7~93.3. Therefore, color value was improved by calcination and organic acid treatment. Buffering capacity of BCCAs was strong at pH 4.88 to 4.92 upon addition of ~2 mL of 1 N HCl. Calcium content and solubility of BCCAs were 20.7~22.8 g/100 g and 97.2~99.6%, respectively. The patterns of fourier transform infrared spectrometer and X-ray diffractometer analyses from BCCA were identified as calcium acetate monohydrate, and microstructure by field emission scanning electron microscope showed an irregular form.

The effects of saline soaking on the removal torque of titanium implants in rabbit tibia after 10 days (0.9% 식염수 담금이 레이저 처리 임플란트의 초기 치유기간의 회전 제거력에 미치는 영향)

  • Park, Jung-Hyun;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.328-334
    • /
    • 2019
  • Purpose: The aim of this study was to confirm if Laser-treated implants were soaked in 0.9% NaCl solution for 2 weeks could increase the surface hydrophilicity, and the Remoal Torque of each implant that inserted in rabbit tibia for initial healing period of 10 days. Materials and methods: Twenty machined titanium surface screws were produced with a diameter 3 mm, length 8 mm. Ten screws had their surface treated with a laser only (laser treated group), and the other 10 were soaked in saline for 2 weeks after surface treatment with a laser (laser treated + saline soaked group). Implants were inserted in rabbit tibia (ten adult New Zealand white rabbits), and the RTQ of each implant was measured after 10 days. The wettability among implants was compared by measuring the contact angle. Surface composition and surface topography were analyzed. Results: After 10 days, the laser treat + soaking group implants had a significantly higher mean RTQ than the laser treated implants (P = .002, < .05). There were no significant morphological differences between groups, and no remarkable differences were found between the two groups in the SEM analysis. Conclusion: Saline soaking implants is expected to produce excellent RTQ and surface analysis results.

Effect of Drug Eluting Uniformity for Biodegradable Stent by Solid Freeform Fabrication (쾌속조형기법을 이용한 생분해성 스텐트용 메쉬필름의 약물방출거동 효과)

  • Cheong, Sin Young;Kim, Yang Eun;Koh, Young Joo;Shin, Wang Soo;Lee, Jun Hee;Kim, Wan Doo;Yoo, Young Eun;Park, Su A
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • Biodegradable drug-eluting stent has dual functions of supporting the lumen and treating internal tumor preventing the restenosis by releasing drug. In this study, the polycaprolactone (PCL) based three dimensional (3D) mesh loaded with paclitaxel (PTX) was presented by rapid prototyping (RP) technique of solid freeform fabrication (SFF) for biodegradable drug-eluting stent application. PCL has many advantageous properties such as good biocompatibility, good mechanical properties, and good drug permeability. PTX is widely used in the cancer treatment by inhibiting tumor cell proliferation. Analytical methods of HPLC and NMR were used for simultaneous quantification of PTX. Scanning electron microscopy (SEM) was performed to observe the architecture and morphologies of 3D mesh. The cytotoxicity assay results indicated released PTX's biological activity. This study provided that PCL based 3D mesh loaded with PTX by RP technique has great potential for biodegradable drug-eluting stent application.

Influence of Temperature and Affinity of Disperse Dye on Dyeing of PET(Polyethylene Terephthalate) Microfiber (PET 초극세사 염색에서 분산염료의 친화력과 온도 의존성)

  • Lee, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.532-540
    • /
    • 2019
  • PET microfibers with various diameters (0.5, 0.2, 0.06, and 0.01 dpf) were dyed with a dispersed dye (C.I. Disperse Blue 56) at various temperatures. The dyeing process was conducted under infinite dyebath conditions at constant temperatures. The effects of the dyeing temperature and diameter on the partition coefficient, affinity, and diffusion coefficient of disperse dyes were studied. The curve of isotherms was fitted well to Nernst-type model in a large range of initial dye concentrations. At the same temperature, the partition coefficient and affinity decreased with increasing sample diameter due to the increase in surface area. At all deniers, the partition coefficient and affinity decreased with increasing temperature because the dyeing process is an exothermic reaction. In addition, the decrease in radius of the sample gives rise to a decrease in the heat of dyeing. The fine diameter of the sample resulted in an increased surface area but decreased space between the microfibers. Consequently, decreasing the diameter of the microfibers leads to a decrease in the diffusion coefficient. At the same diameter, the diffusion coefficient increased with increasing temperature because of rapid dye movement and the large free volume of the sample inside. In addition, thermal dependence of the diffusion coefficient increased when the diameter of the sample increased.

Inhibitory Effects of Cinnamon, Clove and Lemongrass Essential Oils against Biofilm Formation by Food Poisoning Bacteria (식중독 미생물의 biofilm 형성에 대한 계피, 정향 및 레몬그래스 정유의 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.430-439
    • /
    • 2021
  • Essential oils with excellent antibacterial activity were used to study the inhibitory effect against the six types of food poisoning biofilms formed on the surfaces of polyethylene (PE) and stainless steel (SS) that are widely used for food processing instruments and containers. The antibacterial activity of 20 kinds of essential oils was tested using the disk diffusion method. The result showed the degree of antibacterial activity in the following order: cinnamon> clove> lemongrass> peppermint> pine needle (highest to lowest). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of cinnamon and clove oil were in the range of 0.63-1.25 mg/mL and 1.25-2.50 mg/mL, respectively. The MIC and MBC of lemongrass oil were 1.25-2.50 mg/mL and 2.50-5.00 mg/mL, respectively, showing slightly less antibacterial activity. Although the preventive effect of three types of essential oils on the biofilm formation differed slightly depending on food poisoning bacteria, PE, and SS, it was found that the precoating of 0.5% cinnamon, clove, and lemongrass oil on the PE and SS affects the formation of biofilm. Increased essential oil concentration significantly inhibited the biofilm formation for all food poisoning bacteria (P<0.05), and biofilms of Listeria monocytogenes and Staphylococcus aureus were not formed when treated with 0.5% cinnamon and clove oil. The elimination effect of food poisoning bacteria biofilms formed on the surfaces of PE and SS differed depending on the type of food poisoning bacteria. Still, the biofilm elimination effect increased as the essential oil concentration increased, and the biofilm elimination rate of clove oil was generally high. Therefore, this study found that the cinnamon and clove essential oils (0.5%) are suitable natural materials that effectively prevent, inhibit, and remove the biofilms formed by the food poisoning bacteria on the surfaces of polyethylene and stainless steel.

Technological Diversities Observed in Bronze Objects of the Late Goryo Period - Case Study on the Bronze Bowls Excavated from the Burial Complex at Deobu-gol in Goyang - (고려 말 청동용기에 적용된 제작기술의 다양성 연구 - 고양 더부골 고분군 출토 청동용기를 중심으로 -)

  • Jeon, Ik Hwan;Lee, Jae Sung;Park, Jang Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.208-227
    • /
    • 2013
  • Twenty-seven bronze bowls excavated from the Goryo burial complex at Deobu-gol were examined for their microstructure and chemical composition to characterize the bronze technology practiced by commoners at the time. Results showed that the objects examined can be classified into four groups: 1) objects forged out of Cu-near 22%Sn alloys and then quenched; 2) objects cast from Cu-below 10% Sn alloys containing lead; 3) objects cast from Cu-10%~20% Sn alloys containing lead and then quenched; 4) objects forged out of Cu-10~20% Sn alloys containing lead and then quenched. This study revealed that the fabrication technique as determined by alloy compositions plays an important role in bronze technology. The use of lead was clearly associated with the selection of quenching temperatures, the character of inclusions and the color characteristics of bronze surfaces. It was found that the objects containing lead were quenched at temperatures of $520^{\circ}{\sim}586^{\circ}C$ while those without lead were quenched at the range of $586^{\circ}{\sim}799^{\circ}C$. The presence of selenium in impurity inclusions was detected only in alloys containing lead, suggesting that the raw materials, Cu and Sn, used in making the lead-free alloys for the first group were carefully selected from those smelted using ores without lead contamination. Furthermore, the addition of lead was found to have significant effects on the color characteristics of the surface of bronze alloys when they are subjected to corrosion during interment. In leaded alloys, corrosion turns the surface light green or dark green while in unleaded alloys, corrosion turns the surface dark brown or black. It was found that in fabrication, the wall thickness of the bronze bowls varies depending on the application of quenching; most of the quenched objects have walls 1mm thick or below while those without quenching have walls 1mm thick or above. Fabrication techniques in bronze making usually reflect social environments of a community. It is likely that in the late Goryo period, experiencing lack of skilled bronze workers, the increased demand for bronze was met in two ways; by the use of chief lead instead of expensive tin and by the use of casting suitable for mass production. The above results show that the Goryo bronze workers tried to overcome such a resource-limited environment through technological innovations as apparent in the use of varying fabrication techniques for different alloys. Recently, numerous bronze objects are excavated and available for investigation. This study shows that with the use of proper analytical techniques they can serve as a valuable source of information required for the characterization of the associated technology as well as the social environment leading to the establishment of such technology.

Surface Polishing of Polymer Microlens with Solvent Vapor (솔벤트 증기를 이용한 폴리머 마이크로 렌즈의 표면 연마)

  • Kim, Sin Hyeong;Song, Jun Yeob;Lee, Pyeong An;Kim, Bo Hyun;Oh, Young Tak;Cho, Young Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.644-649
    • /
    • 2013
  • Today, there are lots of progresses in the field of lens researches, especially in the microlens fabrication. Unlike normal lenses, microlens has been widely used as a role of improving the performance of photonic devices which increase the optical precision, and also used in the fields of the display. In this paper, polymer microlenses with $300{\mu}m$ diameter were replicated through hot-embossing from nickel mold which was fabricated by micro-EDM. After hot-embossing process, the polymer microlenses have a rough surface due to the crater formed by micro-EDM process, which is projected onto the surface of the lenses. The surface of polymer microlenses was polished using solvent vapor to improve the surface roughness of the microlenses without changing their shape. In the experiment, the surface roughness was improved with the processing time and vapor temperature. Also, the roughness improvement was greatly affected by the solubility difference between polymer and solvent.

Functional Nanochannels to Control Ion Transportation with Monomolecule Selectivity (단일 이온 인식형 이송 제어 기능성 나노채널 기술)

  • Kim, Jeong Hwan;Lee, Eung-Sug;Whang, Kyung-Hyun;Yoo, Yeong-Eun;Yoon, Jae-Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • Functional nanochannels were fabricated in order to control selective ion transportation with high permeability and low energy consumption. In this research, nanochannel platform fabrication process and surface functionalization process were developed. In addition, selective ion transportation and concentration measurement system was also set-up. By using fabricated multilayer metal membrane with electrical bias, 95% of ion ($Cl^-$) was blocked. This developed process is new-conceptional membrane fabrication technology and is expected to be applied to next-generation water purification/desalination, portable artifical kidney, and artificial sense organ.

Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal (코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.