• Title/Summary/Keyword: 가공변형

Search Result 1,040, Processing Time 0.023 seconds

Numerical Analysis of Residual-Stress Relaxation in a Die Forging (형단조품의 잔류응력 제거처리공정 수치해석)

  • 박성한;이방업;조원만;은일상
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.16-16
    • /
    • 1998
  • 우주발사체용 로켓트 구조재로 사용되는 알루미늄합금 단조재는 강도확보를 위하여 고온으로 가열후 급냉과정에서 상당한 크기의 잔류응력이 발생되고 이로 인해 기계가공시 변형이 유발되어 조립성이 나빠진다. 잔류응력은 그 크기가 재료의 항복강도를 초과할 때 제거되므로 응력제거(stress relief)를 위해서는 외부하중이 가해져야 한다. 응력제거 처리는 소성변형, 열처리 및 초음파 등의 방법으로 수행되며 소성변형에 의한 제거효과가 가장 크다 형상이 복잡한 형 단조재의 경우 열간단조금형과 동일한 금형을 이용하는 TX52 등의 방법을 적용한다고 알려져 있으나 TX54에 대한 금형설계 및 소성변형률 적용 데이터는 공정 know-how로 분류되어 있다. 잔류응력제거 처리의 해석적 연구로는 판재와 링롤재에 대해서는 인장 및 압축 소성변형에 적용에 대한 결과가 발표된 바 있으나 형 단조재의 경우에는 전무하다

  • PDF

A Determination of Approximated Cylindrical Surfaces of Doubly Curved Surfaces for the Least Line Heating (최소 2차 가공을 위한 이중 곡면의 롤러 굽힘 형상 결정)

  • Dae-Kyu Yun;Jong-Gye Shin;Cheol-Ho Ryu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.134-143
    • /
    • 1999
  • The ship's bows and sterns are assembled with the curved blocks. In shipyards, the roller bending and the line heating or others are being used to fabricate such doubly curved shell. Firstly, the cylinder- or cone-type is formed through the roller bending, and then, the line heating is implemented to form the rest. This paper presents an algorithm to determine the direction for the roller bending and the shape to be formed as fabrication information. The direction for the roller bending is determined with Gauss mapping of the desired surface and the shape to form is calculated by comparing the bent shape with the desired shape.

  • PDF

Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions (하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1852-1860
    • /
    • 1991
  • A shape design sensitivity of the elastic deformation due to a change of traction boundary condition is presented. The solution of governing equations for a linear elasticity problem is obtained by finite element method and the traction boundary is defined by design variables. The performance functional to be considered involves both the domain and boundary integral. Variations of geometry can be defined as design velocity. Using material derivative concept and adjoint equations, the design sensitivity is derived by Lagrange multiplier method. For a given geometry of a structure, the change of traction boundary is described by the tangential component of the design velocity only. The final result for the shape design sensitivity is formulated as the boundary integral form, the integrand is defined by tangential component of design velocity and first order derivatives of parameters. Numerical implementation of design sensitivity is discussed and is compared with the difference of the actual values.

Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect (변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석)

  • Lee, Jung-Han;Oh, Jae Yong;Park, Sang Hu;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

A Study on Distortion Induced by Elasticity and Heat Treatment of Automotive Bevel Gears (자동차용 베벨 기어의 탄성변형과 열처리변형에 관한 연구)

  • Kim H. Y.;Kim M. G.;Cho J. R.;Bae W. B.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.170-173
    • /
    • 2004
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to elastic and heat treatment of bevel gears Is investigated. Distortions of forged gears, machined gears and die aremeasured and compared. Numerical analysis is used to simulate the complete cold forged process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF

Deformation Capacity of Endplate-type Beam-to-Column Connection with New Type Mechanical Fasteners (신형상 메카니컬패스너를 사용한 엔드플레이트 형식 보-기둥 접합부의 변형성능)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.123-130
    • /
    • 2006
  • This study propose cutting body portion-high strength mechanical fasteners to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connections. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body (차체용 강판의 온도에 따른 변형률 속도 민감도 연구)

  • Lee H. J.;Song J. H.;Cho S. S.;Kim S. B.;Huh H.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF

A Study of Wet Process for High-durability Automobile leather (Automobile leather의 내구성 증진을 위한 Wet process 연구)

  • Shin, Eun-Chul;Lee, Sang-Chul;Kim, Won-Ju;Kang, Gun;Yun, Mi-Jung;Oh, Jung-Suk;Jeong, Ki-Yeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.53-53
    • /
    • 2011
  • 자동차용 천연가죽 시트의 제조 공정에서 크롬과 비크롬 Metalic 탄닝제, 식물성 탄닝제, 신탄(Syntan) 및 가지제(Fatliuor) 등의 종류와 함량에 따른 인장강도, 신장율, 정하중 신율, 잔류줄음율 등을 측정하여 특정하중에 따른 콜라겐 섬유 조직의 영구변형율과의 상관관계를 비교 분석해본 결과, 크롬 및 비크롬계 탄닝제에 비해 식물성 탄닝제를 적용하였을 때 조직의 변형율이 적었으며, 리틴닝 공정에서 아크릴계, 레진계 및 단백질계 신탄을 혼합 적용하였을 때 가죽의 배(Belly)부위의 물성 균일화 효과가 우수하였으며, 음이온성 가지제 9%를 사용하여 가죽에 유연성을 부여함으로써 조직이 치밀하고 변형율이 감소되어 내구성이 우수한 결과를 나타내었다.

  • PDF

An Effect of Strain rate of Forming limits of Mg Alloy at Warm Sheet Forming (Mg합금 온간판재 성형시 성형한계에 미치는 변형률 속도의 영향)

  • Jung, J.H.;Kim, M.C.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.279-280
    • /
    • 2007
  • In this study, it is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and forming limits of Mg alloy sheet in square cup deep drawing. Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed is very important factor for formability and forming limits. Therefore, the investigation for process variables is necessary to improve formability and forming limits. Also, the effects of strain rate and thickness transformation were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and strain rates were investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate the formed parts were good without defects fur forming limits.

  • PDF

Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model (변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법)

  • Cho, S.S.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF