• Title/Summary/Keyword: 가공모델

Search Result 960, Processing Time 0.022 seconds

A new Model to Optimize the Process Conditions in Tension Leveling - Part I : Prediction of the Strip Curvature and the Roll Force (텐션 레벨링 공정 최적화를 위한 수식 모델 - Part I : 곡률 및 압하력 예측)

  • Cho, Y.S.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.371-376
    • /
    • 2013
  • The shape defects such as edge waves and center buckles may be formed in the rolled strip because rolling can easily produce non-homogenous elongation across the strip width. The main purpose of tension leveling is to remove such defects by eliminating the differences in elongation. In this paper, a new approach for the optimization of the process conditions in tension leveling is presented. The approach consists of an analytic model for the prediction of the strip curvature and the force at each roll. The accuracy of the proposed model is examined through comparison with the predictions from a finite element model.

FE-based On-Line Model for the Prediction of Roll Force and Roll Power in Finishing Mill (II) Effect of Tension (유한요소법에 기초한 박판에서의 압하력 및 압연동력 정밀 예측 On-Line모델 (II) 장력의 영향)

  • KWAK W. J.;KIM Y. H.;PARK H. D.;LEE J. H.;HWANG S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • On-line prediction model which calculate roll force, roll power and forward slip of continuous hot strip rolling was built based on the results of plane strait rigid-viscoplastic finite element process model. Using the integrated FE process model, a series of finite element simulation was conducted over the process variables, and the influence of various process conditions on non-dimensional parameters was inspected. The prediction accuracy of the proposed on-line model under front and back tension is examined through comparison with predictions from a finite element process model over the various process conditions. In addition, we examined the validity of the on-line prediction model through comparison with roll force of experiment in hot rolling.

  • PDF

Predictions of Texture Evolution and Plastic Anisotropy by Cross Rolling Based on Crystal Plasticity (결정소성학을 이용한 교차압연시의 집합조직과 소성이방성의 예측)

  • Kim D. S.;Won S. Y.;Son H. S;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.309-312
    • /
    • 2001
  • FEM simulating system of the cross-rolling texture formation offers a systematic and efficient way of exploring the relationship between the process variables and the state of plastic anisotropy of sheet product. Cross-rolled sheets possess higher average plastic strain ratios and lower planer anisotropy than those of the straight-rolled sheets. The employed model is a finite-element polycrystal model which each element used in FEM is assumed to be a crystal having different orientation by Takahashi. Texture development, deformation textures due to cross-rolling are predicted for face-centered cubic sheet metal. Crystal orientations are assigned on the basis of the pole figures obtained by X-ray diffraction. Development of anisotropy during cross rolling of an fcc sheet material is predicted theoretically with respected to flow stress and R-value in tensile test.

  • PDF

Hot Workability Characterization of Ti Alloys Using Dynamic Material Model (동적재료모델을 활용한 티타늄합금의 고온성형성 고찰)

  • Yeom J. T.;Hyun Y. T.;Na Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.301-304
    • /
    • 2001
  • Hot-compression tests were carried out to investigate the hot workability of Ti64 and Ti6246 alloys at different temperatures and strain rates. Processing maps were developed on the basis of the dynamic material model unifying the relationship among constitutive behavior, hot workability and microstructure development. Stable regions, defined on the basis of four stability criteria 0${\delta}log(m)/\frac{\bot}{\varepsilon})<0$, s<1 and ${\delta}log(s)/\frac{\bot}{\varepsilon})<0$, were found to be associated with dynamic recovery and recrystallization.

  • PDF

Cell Formation Models Considering Loading, Alternative Routes, and Operations in a FMS (FMS에 있어서 공정할당 및 대체 가공경로를 고려한 셀 형성모델)

  • Chung, Byung Hee;Yoon, Chang Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.73-87
    • /
    • 1999
  • 본 연구에서는 다양한 종류의 공정을 수행할 수 있는 가공장비와 자동화된 물류 운반시스템으로 구성된 FMS의 효율적 운영을 위해 셀 제조방식의 개념을 도입한 다수의 유연셀 형성 방법을 제시하고 있다. 서로 독립적인 유연셀의 형성을 위해 FMS의 장점인 공정유연성을 최대한 활용할 수 있도록 기계-공정 행렬과 부품-공정 행렬에 기초한 2 종류의 새로운 유사도 계수와 예외적 요소의 수를 최소화하기 위한 셀 형성 알고리즘을 개발하였다. 두 행렬들은 다공정 수행가능기계간 유사도와 기계셀과 부품간 비처리 능력지수 산출의 기초자료로 사용된다. 알고리즘은 예외적 요소의 수를 최소로 하면서 셀의 수를 최대로 하는 정리에 기초하여 공정을 기계에 할당하며, 다수의 대체경로가 유연셀내에서 형성될 수 있도록 크게 2 단계로 구성되어 있다. 마지막으로 수치예제와 함께 예외적 요소의 발생수를 척도로 하여 기존의 방법들과 비교, 평가하고 있다.

  • PDF

Drawing Strain Distribution Model for the Two-Pass Drawing Process (2단 튜브인발 공정시 인발변형률 배분모델 재발)

  • Lee D. H;Chung U. C;Moon Y. H
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.671-677
    • /
    • 2004
  • For the large reduction in tube cross section, the tube drawing process is usually performed by two successive passes, so called first drawing and second drawing. In multi-pass drawing process, the reduction balance is important to prevent drawing cracks. Therefore in this study, the model for uniform reduction distribution in two-pass drawing process has been developed on the basis of cross sectional variation of drawn tube. For the given product geometry the model provides optimal diameter and thickness that can evenly distribute drawing reductions. The capability of model is well confirmed by finite element analysis of tube drawing process. Criteria curves at various limit strains to determine whether the drawn tube would fail during drawing process are also proposed by using newly developed model.

Development of Mathematical Model for the Prediction of Roll Force and Tension Profiles in Flat Rolling (판 압연에서 압하력 및 장력 분포 예측 모델 개발)

  • Kim, Y.K.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.344-351
    • /
    • 2010
  • This paper presents a precision on-line model for the prediction of the roll force and tension distributions across the strip in hot strip rolling. The approach is based on an approximate 3-D theory of rolling, and in particular, considers the effect of pre-deformation of the strip, which occurs near the roll entrance before the strip enters the bite zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from the 3-D finite element models.

Application of Equivalent Drawbead Model to Auto-Body Stamping Analysis (차체 스탬핑 해석에 등가 드로우비드 모델의 적용)

  • Lee, J.Y.;Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.389-392
    • /
    • 2009
  • The application of an equivalent drawbead model(EDM) for sheet metal forming analysis, which adopts the forces instead of complex geometries in modeling the drawbead, to the numerical simulation of auto-panel stamping process is introduced in this study. In terms of the thinning and draw-in, better agreement with experimental measurements was found in EDM than in commercial code models so that the excellence of EDM in the accuracy of drawbead forces for the simulation of auto-body stampings was revealed.

  • PDF

Determination of Material Parameters for Microstructure Prediction Model Based on Recystallization and Grain Growth Behaviors (재결정 및 결정립 성장거동을 기초한 조직예측 모델에 대한 변수 결정방법)

  • Yeom, J.T.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.270-273
    • /
    • 2009
  • This work describes a method of determining material parameters included in recrystallization and grain growth models. Focus is on the recrystallization and grain growth models of Ni-Fe base superalloy, Alloy 718. High temperature compression tests at different strain, strain rate and temperature conditions were chosen to determine the material parameters of dynamic recrystallization model. The critical strain and dynamically recrystallized grain size and fraction at various process variables were quantitated with the microstructual analysis and strain-stress relationships of the compression tests. Besides, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the measured data obtained from other compression tests.

  • PDF

An Improved Constitutive Model of Shape Memory Alloy (형상기억합금의 개선된 구성적 모델)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.350-356
    • /
    • 2011
  • Shape memory alloys(SMAs) exhibit pseudoelastic behavior, characterized by the recovery of an original shape even after severe deformation, during loading and unloading within appropriate temperature regimes. The distinctive mechanical behavior is associated with stress-induced transformation of austenite to martensite during loading and reverse transformation to austenite upon unloading. To develop a material model for SMAs, it is imperative to consider the difference in moduli of active phases. For example, the Young’s modulus of the martensite is one-third to one half of that of the austenite. The model proposed herein is a modification of the one proposed recently by Ho[17]. The prediction of the behavior of SMAs during unloading before the onset of reverse transformation was improved by introducing a new internal state variable incorporating the variation of the elastic modulus.